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LEVER:	stem	cell	segmentation,	tracking,	and	lineaging.	Bioimage	Lab.	Drexel	University. Humanitarian	Assistance	and	Disaster	Relief	(HADR)	Data	Products	for	Hurricane	
Dorian	2019	Response

RoboCat:	A	category	theoretic	framework	for	robotic	interoperability	using	goal-oriented	programming
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Context	in	decision-making

Really	hard	question:	How	did	a	change	in	the	problem	(context)	impact	the	
space	of	designs	that	could	address	it?
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Context	in	automated decision-making
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”Engineers	are	not	the	only	professional	designers.	Everyone	[or	thing]	designs	who	devises	
courses	of	action	aimed	at	changing	existing	situations	into	preferred	ones.”	

– Herbert	Simon,	The	Science	of	Design:	Creating	the	Artificial

☞ This	sounds	a	lot	like	planning…

Let’s	scope	it	down	to	domains	with	more	defined	
structures,	e.g.	knowledge	representation	and	automated	
planning.

Release	the	robots!



Making	use	of	context	in	robotics

Increased	availability	and	
capability	of	sensors	results	
in	an	increase	of	information.
This	increases	the	
computational	demands	as	
more	algorithms	that	use	the	
information	get	deployed.	
Deciding	what	information	is	
relevant	makes	knowledge	
interoperable	between	tasks.
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A	general	framework	for	determining	what	is	contextually	important	(contextual	attention)

Context	awareness	– mechanism	that	allows	an	agent	to	adjust	its	behavior	in	response	to	dynamic	
context	information	such	as	location	and	resources; traditionally	for	mobile	and	IoT	devices

https://automationforum.co/what-are-sensors-on-a-robot-and-why-are-sensors-
important-to-robots/



Terminology
Definition	(Context).	Context is	a	description	of	the	characteristics	of	the	environment	an	
agent	must	act	in.	

Definition	(Action). An	action is	an	operation	that	changes	the	state	of	some	or	all	
characteristics	of	the	environment.

Definition	(Task	plan). A	task	plan is	sequence	of	actions	that	achieves	a	specified	goal.

Definition	(Contextual	attention).	Contextual	attention	is	the	identification	of	context	entities	
that	are	most	important	in	achieving	the	task.	Importance	means	that	some	property	of	
achievable	tasks	exceeds	a	given	threshold	when	the	context	entity	is	removed	or	modified.
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Related	methods	for	contextual	attention
In	perception	and	sensor	fusion

• Filling	in	gaps	in	images	based	on	context
• Representation	learning	(find	most	concise	
state	representation)

• Value	of	information

In	knowledge	representation	and	
planning

• Case-based	reasoning	(Schank 1982)
• Recommender	systems
• Bayesian	network,	POMDPs,	MDPs
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Limitations
• Data-driven,	requires	learning
• Requires	attention	criteria	a	priori
• Focused	on	inferring	high-level	
context	from	low-level	context

• No	denotational	semantics
• Not	tied	to	capability
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Manufacturing Disaster	relief

Example	Scenarios

Context:
Ø Machine	has	a	hinge	door
Ø Item	is	rod	of	length	2	meters
Ø Rod	is	bronze	metal

Context:
Ø On	University	Ave
Ø Adjacent	to	Dunkin	Donuts
Ø Has	granite,	not	ceramic,	kitchen	countertops
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Disaster	relief	(path	planning)

Example	Scenario

Task:	Go	to	injured	civilian
1. Move	forward	until	you	University	Ave
2. Make	a	right	at	the	Dunkin	Donuts
3. Locate	civilian	on	street

University	Ave
Civilian

Street

26

Geolocation

Home	Address

Home

Granite

Dunkin	Donuts

isAge

hasAddress

has

hasKitchenCountertop

at

hasStreetName

hasStreet

adjacentTo
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Home	renovation	(demolition)

Example	Scenario

Task:	Replace	granite	with	ceramic	in	kitchen
1. Identify	surfaces	with	granite
2. Measure	surface
3. Remove	surface
4. Add	ceramic	slate	of	correct	size

University	Ave
Civilian

Street

26

Geolocation

Home	Address

Home

Granite

Dunkin	Donuts

isAge

hasAddress

has

hasKitchenCountertop

at

hasStreetName

hasStreet

adjacentTo
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Manufacturing	(machine-tending)

Example	Scenario

Task:	Cut	rod	to	1	meter
1. Open	door
2. Pick	rod	greater	than	1	meter
3. Place	in	machine
4. Close	door

Machine

Cut

Rod

HingeDoor

Length	in	meters Color

2 Bronze	metal

hasCapability hasDoorType

hasProperty hasProperty

Workpiece

isA

hasValue hasValue
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Manufacturing	(painting)

Example	Scenario

Task:	Paint	rod	silver	metal
1. Locate	rod	that	is	not	silver	metal
2. Paint	rod	silver	metal

Machine

Cut

Rod

HingeDoor

Length	in	meters Color

2 Bronze	metal

hasCapability hasDoorType

hasProperty hasProperty

Workpiece

isA

hasValue hasValue
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Some	machine	tracking	context Some	machine	tracking	achievable	tasks

Informally	speaking…

Some	structure-preserving	relationship	between	them



Formal	semantic	framework	requirements
(a) The	ability	to	encode	both	procedural	(task,	motion,	and	control	sequences)	and	

declarative	(knowledge)	data.

(b) The	ability	to	track	between	abstraction	levels	(hierarchy).

(c) The	ability	to	encode	composite	(parts	of	a	whole,	decomposition,	traceability)	
relationships	and	composition	(merging,	gluing,	planning)	relationships.	

(d) The	ability	to	encode	binary	relations	such	as	equivalence	and	inclusion.	

(e) The	ability	to	adhere	to	constraints	demanded	by	the	internal	syntax	of	knowledge,	
plans,	and	control.	
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Related	work
• MBSE	& Robotics

• Platform	independent	model	(PIM)	and/or	platform	specific	
model	(PSM)	with	model-to-model	and	model-to-text	
transformation	methods	to	synthesize	robotic	implementations	
(Heinzemann 2018,	Bocciarelli 2019,	Brugali 2016,	Ruscio 2016,	
Bruyninckx 2013,	Ringert 2015,	Nordmann	2015,	Wigand	2017,	
Steck 2011,	Schlegel	2010,	Hochgeschwender 2016)

• MBSE	& Category	theory
• Bidirectional	model	synchronization,	state-based	and	delta-
based	lenses	(Diskin	2008,	Diskin	2011,	Diskin	2012)

• Model	transformations	with	constraints	(Rutle 2010,	Rutle 2012)
• Program	synthesis	using	metamodels	(Batory 2008)

• Robotics	& Category	theory
• Symmetric	monoidal	categories	for	modeling	robot	program	
abstractions	(Aguinaldo	2020)

• Co-design	applied	to	autonomous	system	design	(Zardini 2021	
ECC,	Zardini 2021	IROS)

Model-based	
systems	

engineering	
(MBSE)

Robotics
• Knowledge	
representation
• Software	
architectures
• AI	reasoning

Category	
theory
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What	is	category	theory?
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Category	theory	is	a	branch	of	mathematics	that	provides	mathematical	structures	whose	properties	are	
attentive	to	composition	of	relationships.

A	category	(ℂ)	is:
• A	set	of	objects 𝐴, 𝐵, 𝐶, …
• A	set	of	morphisms 𝑓, 𝑔, ℎ, … that	map	objects	to	objects
• Where	every	object	has	an	identity	morphism,	𝑖𝑑!

• Composition	operator,	∘,	between	morphisms	that	is	associative and	
has	identity	morphisms	as	unitors



What	is	category	theory?
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Category	theory	is	a	branch	of	mathematics	that	provides	mathematical	structures	whose	properties	are	
attentive	to	composition	of	relationships.

A	category	(ℂ)	is:
• A	set	of	objects 𝐴, 𝐵, 𝐶, …
• A	set	of	morphisms 𝑓, 𝑔, ℎ, … that	map	objects	to	objects
• Where	every	object	has	an	identity	morphism,	𝑖𝑑!

• Composition	operator,	∘,	between	morphisms	that	is	associative and	
has	identity	morphisms	as	unitors

A	symmetric	monoidal	category	(𝕄),	 adds:
+ Tensor	product,	⨂,	which	is	the	product	of	𝕄 (objects	and	
morphisms)	with	itself	that	is	associative and	has	unitor	isomorphisms	

+ Braiding	isomorphism	where	𝐵 ",$ : 𝑋 ⊗ 𝑌 → 𝑌⊗𝑋

A	string	diagram	is	the	graphical	syntax	for	symmetric	monoidal	
categories,	where	boxes	are	morphisms	and	strings	are	objects.

𝑖𝑑! ⊗ 𝑖𝑑" ⊗ 𝑖𝑑# ∘
𝑔$ ∘

𝑖𝑑" ⊗ 𝑖𝑑% ∘
𝑓$ ∘

𝑖𝑑#⊗ 𝑖𝑑"
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String	Diagrams	from	Category	Theory

24

More	than	just	a	picture



String	Diagrams	for	PDDL
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pick-up

clear b ontable b handempty

holding b ¬ ontable b ¬ clear b ¬ handempty

(Pre-condition)	Literal

Action

Categorification	of	Planning	Solution
• Objects	are	literals
• Morphisms	are	actions
• Composition	(∘)	chains	actions
• Tensor	product	(⨂)	implies	parallel	

actions	or	conjunction	of	literals

(Effect)	Literal

PDDL	– Planning	Domain	Definition	Language	(McDermott	1998)



String	Diagrams	for	Resource	Tracking

String	diagram	with	arbitrary	time	slices	(t0	- t8)	overlayed.	At	every	time	slice,	we	have	complete	knowledge	of	the	data	
resources	and/or	function(s)	running.	Each	slice	can	be	re-interpreted	in	a	linear	mathematical	syntax	(not	shown).	Note,	this	

is	only	one	sample,	discovered	by	the	PDDL	solver,	from	the	larger	valid	solution	space.

t0

t1

t2

t3

t4

t5

t6

t7

t8
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Visualize	Classical	AI	Planning	Solutions

pick-up

clear c ontable c

pick-up

clear b ontable b handempty

stack

clear a

ontable a

¬ ontable b ¬ clear b ¬ handempty

holding b

on b a ¬ holding b ¬ clear a

handempty

stack

clear b

¬ ontable c ¬ clear c ¬ handempty

holding c

clear c handempty on c b ¬ holding c ¬ clear b

(define (problem BLOCKS-3-0)
(:domain BLOCKS)
(:objects a b c)
(:init (clear c) (clear a) (clear b) 
(ontable c) (ontable a) (ontable b) 
(handempty))
(:goal (AND (on c b) (on b a)))
)

(define (domain BLOCKS)
(:requirements :strips)
(:predicates (on ?x ?y)
(ontable ?x)
(clear ?x)
(handempty)
(holding ?x)
)

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) 
(ontable ?x) (handempty))
:effect
(and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))
...

pick-up b
stack b a
pick-up c
stack c b

Domain	file Problem	file Solution Angeline	Aguinaldo	and	William	Regli.	Encoding	
Compositionality	in	Classical	Planning	Solutions.	

International	Joint	Conference	for	Artificial	Intelligence	
(IJCAI)	Generalization	in	Planning	Workshop.	2021.



Contents

A. Research	motivations:	denotational	semantics	for	context
B. Categorical	semantics	for	robotics
I. Categories	for	AI	planning
II. Functors	for	program	compilation
III. Lenses	and	C-Sets	for	knowledge	representation	and	

contextual	reasoning
C. Using	category	theory	in	practice

28



What	is	a	functor?
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Example
X and	Y are	categories	where,

Objects(𝑿)	=	
{𝐴, 𝐵, 𝐶, 𝐷}

Arrows(𝑿)	=	
{𝑓: 𝐴 → B, 𝑔: 𝐵 → C, ℎ: 𝐵 → 𝐷}

Objects(𝒀)	=	
{dog,	cat,	mouse,	rabbit}

Arrows(𝒀)	=	
{𝑓!: dog → cat, 𝑔!: cat → mouse, ℎ′: cat → rabbit}

A	possible	functor,	F,	could	be

objects arrows identities

𝐴 ⟼ dog
𝐵 ⟼ cat
𝐶 ⟼mouse
𝐷 ⟼ rabbit

𝑓 ⟼ 𝑓$
𝑔 ⟼ 𝑔$
ℎ ⟼ ℎ′

𝑖𝑑# ⟼ 𝑖𝑑dog
𝑖𝑑" ⟼ 𝑖𝑑cat
𝑖𝑑! ⟼ 𝑖𝑑mouse
𝑖𝑑& ⟼ 𝑖𝑑rabbit

Check	
𝐹 𝑔 ∘ 𝑓 = 𝐹𝑔 ∘ 𝐹𝑓 = 𝑔! ∘ 𝑓! =mouseStructure-preserving	map	between	categories
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Goal-oriented Functional Program

User

writes

Functional Interoperable Compiler

is compiled by

Canonical Robot Command 
Language (CRCL)

composes functional program

Robot vendor A Robot vendor N

downward maps to

upward maps to

Same behavior 
interoperability

Same program 
interoperability

Same program 
interoperability

downward maps to

upward maps to

Goal-Oriented	Robot	Programming



Software
Identify skills necessary to complete the 

desired action. Identify informational inputs 
and outputs for each skill.

Physical
Identify types of physical resources 
needed to execute program. Name 

the program.

Specification
Identify available command types and 
their possible parameters according to 
target robot command specification.

Goal-Oriented	Robot	Programming
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A.	Aguinaldo,	J.	Bunker,	B.	Pollard,	A.	Canedo,	G.	Quiros,	W.	Regli.	RoboCat:	A	category	theoretic	framework	for	robotic	
interoperability	using	goal-oriented	programming.	IEEE	Transactions	for	Automated	Science	and	Engineering.	2022.

Goal-Oriented	Robot	Programming

Invoking	skill	library

Motion	planning

Robot	specific	controller

CRCL	Message	Broker
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Synchronization	within	robot	architectures

Environment
(world	model,	skills)

Task/Plan
(symbolic)

Control
(programs,	waypoints)

Description Environment	refers	to	the	world	
models	such	as	what	objects	are	
present	and	where	they	are	
located,	the	symbolic	actions	the	
robot	can	accomplish,	and	its	
kinematic	design.

Task	and	motion	plans	
describe	how	the	robot	will	
achieve	a	goal	by	identifying	
a	sequence	of	operations	that	
symbolically	update	the	state	
of	the	world.

Control	refers	to	the	low-
level	instructions	given	to	the	
agent	that	tell	it	how	to	
actuate.

Example	syntax ontologies,	description	logics,	
first-order	predicate	logic

hierarchical	task	nets	(HTN),	
bi-partite	directed	acyclic	
graphs	(DAGs),	Markov	
decision	processes	(MDP)

finite	state	machines,	
directed	graphs	(control	flow	
graphs,	abstract	syntax	
trees),	petri	nets

Example	semantics URDF,	SDF,	KNOWROB STRIPS,	PDDL	plans General	purpose	languages	
(C,	C++,	Python),	robot	
controller	languages	(Kuka	
KRL,	ABB	RAPIDS,	etc.)

All	robotic	architectures	involve	some	synchronization	of	knowledge,	plan,	and	control
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Contextual	Attention	Categorical	Model
Symmetric	delta	lenses	(Johnson	2017)
Spans	in	the	category	of	small	categories,	Cat
• Left	leg:	Discrete	opfibration functor,	G
• Right	leg:	Arbitrary	functor,	F

Within	each	category,	(𝕏,𝕐, ℤ)
• Objects	are	models
• Arrows,	𝑓,	are	model	updates	(deltas)

35

Modeling	capabilities
• Traceability is	defined	via	functors,	𝐺 and	𝐹
• Change	information is	captured	via	the	span,	or	delta,	

construction	for	arrows
• Synthesis of	new	implementations,	namely	task	plans	and	

control	programs,	is	computed	automatically	using	the	
forward	and	backward	propagation	operations

Aguinaldo	A.,	Regli W.	Modeling	traceability,	change	information,	and	synthesis	in	autonomous	
system	design	using	symmetric	delta	lenses.	ICRA	Compositional	Robotics	Workshop	2022.



Category	of	Knowledge	Configurations

Objects Arrows

𝔻 is	an	Olog category	(Spivak	2012),	the	syntactic	category	for	databases,	where	objects	
are	types	and	arrows	are	relations	and	properties.

where	𝐼, 𝐽, …𝐾 ∈ 𝐃 − 𝐈𝐧𝐬𝐭map	to	sets	with	the	
empty	element

𝐼: 𝔻 → 𝐒𝐞𝐭
𝐽: 𝔻 → 𝐒𝐞𝐭

𝐾: 𝔻 → 𝐒𝐞𝐭
…
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Category	of	Knowledge	Configuration	
(Example)

agent

action

object

entity

hasParticipant

isParticipantIn hasParticipant

hasLocation

Based	on	KNOWROB	ontology	(Tenorth 2015) 37



Category	of	Plans
𝕋 is	the	category	of	monoidal	categories.	Functors	between	monoidal	categories	
preserve	the	monoidal	structure.

Objects Arrows
Monoidal(X%, A%, ⨂)

where,	
𝑋" ∈ Set of possible predicates in the world

and	
𝐴" ∈ Set of possible actions in the world that
transition	states	in	the	world

and
⨂ is	the	conjunction	of	predicates	and	actions

Monoidal(X&, A&, ⨂)

Monoidal X', A', ⨂
…
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Future	Work
qWhat	functors,	𝑮 and	𝑭, can	be	defined	between	the	proposed	categories?

• Do	𝐺 and	𝐹 meet	the	requirements	of	symmetric	delta	lenses?	

q Are	all	items	in	the	formal	semantic	framework	requirements	(a)-(e)	met	in	this	
framework?

qWhat	other	properties	does	this	framework	afford	us?

• Can	we	make	a	statement	about	whether	a	reasoning	engine	is	more	capable	than	
another	given	the	same	information	using	this	framework?	

q How	might	we	implement	this	framework	on	a	computer?	What	is	the	computational	
complexity	of	these	queries?

39
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David	Spivak:	https://applied-compositional-thinking.engineering/wp-content/uploads/2021/01/ETH2021-ACT4E.pdf

Flexible	and	adaptable	formal	semantics



Tooling	in	development
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https://github.com/AlgebraicJulia/Catlab.jl



Thank	you	for	listening!
Angeline	Aguinaldo
aaguinal@cs.umd.edu
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Please	feel	free	to	ask	questions	and	provide	feedback	during	1-1s	or	via	email.


