
A Category Theoretic 
Approach to Planning in a 

Complex World
Angeline Aguinaldo

University of Maryland, College Park
Johns Hopkins University Applied Physics Laboratory

Microsoft Future Leaders in Robotics and AI Seminar Series
April 7, 2023



Planning in robotics

2

Aguinaldo A., Bunker J., Pollard B., Shukla A., Canedo A., Quiros G., Regli W. RoboCat: A Category 
Theoretic Framework for Robotic Interoperability Using Goal-Oriented Programming. IEEE 
Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2021.3094055.
Video by Jacob Bunker

Task Planning Motion Planning



Task planning in robotics

3

open-object

close-object

slice-object

pick-up-object

put-object

Initial State: There are sandwich 
ingredients on the countertop

Goal State: There is a tomato and 
lettuce sandwich on the countertop

slice-object

slice-object

pick-up-object

put-object

slice-object

put-object

pick-up-object

WORLD ACTIONS PLANNER



Task planning in robotics

4

Initial State: There are sandwich 
ingredients on the countertop

Goal State: There is a tomato and 
lettuce sandwich on the countertop

slice-object

slice-object

pick-up-object

put-object

slice-object

put-object

pick-up-object

WORLD ACTIONS PLANNER

open-object

close-object

slice-object

pick-up-object

put-object

How do we represent the world?
How do we represent actions?

How do we represent how actions update the world?



Classical approaches to planning

5

PLANNER

on(apple, countertop) 
∧ not(has(robot, apple))
∧ on(knife, countertop)
∧ not(has(robot, knife))
∧ on(tomato, countertop)
∧ not_sliced(tomato))
∧ not(has(robot, tomato))

Use classical 
representation with syntax 
is based on first-order logic 
Ghallab2004

Specify actions using 
Planning Domain 
Description Language 
(PDDL) McDermott 1998

(:action slice-object
:parameters (?obj -

Object)
:precond (not_sliced

?obj))
:effect (and (sliced ?obj) 

(not (not_sliced ?obj)))

Translate world states as 
sets and apply set 
operations (add and 
subtract) Ghallab2004

𝑠

𝑠′

(:action slice-object
:parameters (bread - Object)
:precond (not_sliced bread))
:effect (and (sliced bread) 

(not (not_sliced bread)))

Handling complex world 
states

Transferring actions 
between domains

Managing implicit
effects



Modern approaches to planning

6

PLANNER

Handling complex world 
states

Transferring actions 
between domains Managing implicit

effects
Use scene graphs to model 
world state Galindo 2008, Agia2021

https://visualgenome.org/

Specify abstract methods 
using hierarchical task nets 
(HTNs) Nau 2005

Use frame axioms 
Thiébaux 2005

on(apple, countertop) 
∧ not(has(robot, apple))
∧ on(knife, countertop)
∧ not(has(robot, knife))



My research contributions

7

PLANNER

View world state updates 
as generalized graph 
rewrites that preserve 
composition

Transferring actions 
between domains

Managing implicit
effects

Translate actions between 
domains according to 
isomorphic relations

≅

Handling complex world 
states

Use C-set representation of 
scene graphs to represent 
world state

Aguinaldo A., Patterson E., Fairbanks J., Ruiz J. (2023). A 
Categorical Representation Language and Computational 
System for Knowledge-Based Planning. In review.

𝑋: 𝐶 → Set



Approach

8



Our scene graph

9

(tomato::Tomato) (bread::Bread) (lettuce::Lettuce)

(countertop::SupportSurface)

(knife::Knife) (bowl::Bowl)

(stool::SittingSurface)

on on on

behind

onon

Scene graph as a typed graph



10

{tomato} {bread} {lettuce}

{countertop}

{knife} {bowl}

{stool}

Tomato Bread Lettuce

SupportSurface

Knife Bowl

SittingSurface

on on on

behind

onon

Every typed graph is a C-set Brown2021

Our scene graph



Functorial semantics

11

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop}

{knife} {bowl}

{stool}

Tomato Bread Lettuce

SupportSurface

Knife Bowl

SittingSurface

on on on

behind

onon

Syntax, 𝐶 Semantics, Set



Functorial semantics

12

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop}

{knife} {bowl}

{stool}

Tomato Bread Lettuce

SupportSurface

Knife Bowl

SittingSurface

on on on

behind

onon

Syntax, 𝐶 Semantics, Set

A category, 𝐶, consists of:
• a collection of objects, 𝑂𝑏(𝐶)
• a collection of morphisms for every pairs of objects, 𝐻𝑜𝑚! 𝑥, 𝑦 for 𝑥, 𝑦 ∈ 𝐶
• a composition operation, if 𝑓: 𝑥 → 𝑦, 𝑔: 𝑦 → 𝑧 then 𝑔 ∘ 𝑓: 𝑥 → 𝑧
• an identity morphism for every object, 1": 𝑥 → 𝑥



Functorial semantics

13

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop}

{knife} {bowl}

{stool}

Tomato Bread Lettuce

SupportSurface

Knife Bowl

SittingSurface

on on on

behind

onon

Syntax, 𝐶 Semantics, Set



Functorial semantics

14

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop}

{knife} {bowl}

{stool}

Tomato Bread Lettuce

SupportSurface

Knife Bowl

SittingSurface

on on on

behind

onon

Syntax, 𝐶 Semantics, Set𝑋: 𝐶 → Set (functor)
Patterson, E., Lynch, O., & Fairbanks, J. (2021). 
Categorical Data Structures for Technical 
Computing. Compositionality, 4(5), 1–27. 



Functorial semantics

15

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop}

{knife} {bowl}

{stool}

Tomato Bread Lettuce

SupportSurface

Knife Bowl

SittingSurface

on on on

behind

onon

Syntax, 𝐶 Semantics, Set𝑋: 𝐶 → Set (functor)
Patterson, E., Lynch, O., & Fairbanks, J. (2021). 
Categorical Data Structures for Technical 
Computing. Compositionality, 4(5), 1–27. 

A functor, 𝐹: 𝐶 → 𝐷, from a category 𝐶 to a category 𝐷:
• a map between objects 𝐹:𝑂𝑏 𝐶 → 𝑂𝑏(𝐷)
• a map between homomorphism sets 𝐹:𝐻𝑜𝑚! 𝑥, 𝑦 → 𝐻𝑜𝑚#(𝐹 𝑥 , 𝐹 𝑦 )

such that
𝐹 𝑔 ∘ 𝑓 = 𝐹 𝑔 ∘ 𝐹 𝑓 for 𝑓: 𝑥 → 𝑦 and 𝑔: 𝑦 → 𝑧 in 𝐶
𝐹 1" = 1$ " for every 𝑥 ∈ 𝐶



Functorial semantics

16

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop}

{knife} {bowl}

{stool}

Tomato Bread Lettuce

SupportSurface

Knife Bowl

SittingSurface

on on on

behind

onon

Syntax, 𝐶 Semantics, Set𝑋: 𝐶 → Set (functor)
Patterson, E., Lynch, O., & Fairbanks, J. (2021). 
Categorical Data Structures for Technical 
Computing. Compositionality, 4(5), 1–27. 



C-Sets

17

A category of C-set functors

Brown, K., Patterson, E., & Hanks, T. (2022). 
Computational Category-Theoretic Rewriting 
(Vol. 1). Springer International Publishing. 
https://doi.org/10.1007/978-3-031-09843-7

𝑋 𝑌

Finding an assignment can be formulated as a typed CSP (only consider assignment that satisfies type relations). 
The typed CSP search space grows by 𝑂(𝑛%)where 𝑛 is the size of the target (𝑌) and 𝑘 is the size of the source (𝑋).

For reference, a generic graph homomorphism matching problem is NP-complete.

A transformation, 𝛼, between 𝑋 and 𝑌 is a typed CSP solution if it is natural.

𝛼

CSP: constraint satisfaction problem



Double-pushout (DPO) rewriting

18

Applicability is determined by a 
monomorphism, 𝐼 → X

e.g. A monomorphism in Set is an injective function

𝐼 𝐾 𝑂

𝑌𝑍𝑋

∪

∪
DPO rewrite rule (action)

World state



Forward planning algorithm with DPO

19

Algorithm: Forward Planning with Backtracking

Procedure: ForwardPlan(𝑌 world, 𝐺 goal, r rules, r_usage
rule usage, r_limits rule limits, p plan)
1. (Exit criteria) Ifmonomorphism 𝐺 ↪ 𝑌 exists

1a. Return Plan p
2. Initialize applicable rules list, applicable
3. For rule in r do

3a. Get the input object of rule, 𝑟!
3b. Check if monomorphism 𝑟! ↪ 𝑌 exists
3c. If exists, append rule to applicable

4. (Backtrack criteria) If applicable is empty, “No applicable 
rules!” ThrowException
5. For a in applicable do

5a. (Backtrack criteria) If r_usage[a] >= r_limits[a], 
“Rule limit reached!” continue
5b. 𝑌 = DPO(𝑌, representable(a))
5c. Append a to p
5d. ForwardPlan(𝑌, 𝐺, r, r_usage, r_limits, p)

A. Aguinaldo. "Using categorical logic for AI planning”. AlgebraicJulia Blog [https://blog.algebraicjulia.org/post/2022/09/ai-planning-cset/]. 2022

https://www.algebraicjulia.org/blog/post/2022/09/ai-planning-cset/


Future Work
DIRECTIONS
I. Analogies in planning
Abstracts all domains to a topological setting 
which allows for transfer of actions between 
domains that are isomorphic to rewrite rules

II. Online planning
Abstracts world state updates to a common 
language that can be expressed by an AI 
planner, a human, or a machine

III. Scene affordance relations
All applicable actions can be thought of as 
actions afforded by the scene

20

EVALUATION
• Implement a planning package within the 

AlgebraicJulia ecosystem
• Leverage the C-set structure and DPO 

rewriting procedure developed in 
Catlab.jl

• Implement existing planning algorithms and 
compare plan qualities



Summary
• Explained a toy planning example for how to make a tomato and lettuce 

sandwich
• Explored the applications of C-sets and DPO rewriting as the basis of a scene 

graph planning framework
• Touched on future work regarding analogies in planning, online planning, and 

scene affordance relations

21

Thank you for listening!
Angeline Aguinaldo

aaguinal@cs.umd.edu



Double-pushout (DPO) rewriting

22

𝐼 𝐾 𝑂

𝑌𝑍𝑋

∪

∪
DPO rewrite rule (action)

World state

Applicability is determined by a 
monic transformation, 𝐼 → X

e.g. A monomorphism in Set is an injective function



Merging and gluing operations

23

:close_sandwich=> @migration(SchDB, begin

I => @join begin
sandwich::Sandwich
slice1::BreadSlice
end

K => @join begin
sandwich::Sandwich
slice1::BreadSlice
end

O => @join begin
sandwich::Sandwich
slice1::BreadSlice
sandwich_is_food(sandwich) ==
breadslice_is_food(slice1)
end

end)

A conjunctive (merging) operation is a limit in the category of representable functors.
A gluing operation is a colimit in the category of representable functors.

Depicting last action and last state in the plan

Syntax provided by Catlab.jl


