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Abstract

Artificial intelligence (AI) planning has become a crucial component in the development of intelligent
systems, facilitating the generation and adaptation of plans to achieve specific goals in complex environ-
ments. This thesis addresses the challenge of task planning in complex domains, especially ones with
a large number of objects and properties, rich relations and dependencies, and incomplete or evolving
knowledge. Our approach aims to tackle three specific problems: the difficulty in expressing complex
and structured world states, the challenges in reasoning about transitive relations, and the integration of
AI components for neurosymbolic reasoning. To address these issues, we propose a novel language called
AlgebraicPlanning, based on C-sets and DPO rewriting from category theory. This language uses the
expressive power of ontology-based typed graphs to capture complex world states and the relationships
within them. We hypothesize that our planning framework will yield higher quality plans and enhance
the applicability of task planning in complex real-world domains relative to existing planners. To validate
this, we will design a method for assessing the plan length, stability, success rate, and efficiency of plans
generated by our framework compared to other planning algorithms. We will also explore the application
of our approach in diverse domains, such as classical planning domains, manufacturing, and home service
robotics. The contributions of this thesis are expected to include (i) a robust language for representing
complex world states, (ii) a planning algorithm based on this formalism, (iii) a method for plan quality
assessment, (iv) diverse case studies, and an (v) application of category theory in AI planning. These
advancements will pave the way for more robust and adaptive intelligent systems capable of navigating
and executing tasks in complex environments.
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Chapter 1

Introduction

Over the past few decades, artificial intelligence (AI) planning has grown to be a critical component in
the development of intelligent systems, enabling them to reason about actions and achieve specific goals
within complex environments. A complex environment refers to a scenario or setting with multiple factors,
conditions, or elements that make the planning and execution of tasks more challenging. These factors can
be dynamic, uncertain, or interconnected, and they can influence the robot’s decision-making process. From
the viewpoint of symbolic task planning, a complex world state refers to a situation where the representation
of the environment and the relationships between various elements involve multiple factors that make the
planning problem more challenging. These factors can be related to the number of objects, properties,
relations, and constraints in the environment, as well as the intricacies of the agent’s goals and the interactions
between different agents [37, 71, 32]. In this thesis, we would like to focus particular attention on world
states that have large number of objects and properties, rich relations and dependencies, and incomplete or
changing knowledge. With this in mind, we will not consider the issues related to hierarchical goals, temporal
constraints, and multi-agent scenarios. This restricted view of world state complexity is useful in scenarios
where a robot needs to perform a task in environments that have many object and object interactions in the
world, such as in an assembly line scenario in manufacturing.

For example, imagine a task planning scenario in a large factory with a highly automated assembly
line for producing electric vehicles like one shown in Figure 1.1. The factory floor contains a diverse range
of machines, robots, and human operators working together in a coordinated manner. The assembly line
is composed of different stations, each responsible for a specific part of the vehicle assembly process. In
this complex environment, the world model would need to represent various objects and relations, such
as different types of machines, like welding machines, painting machines, and assembly machines; various
vehicle parts, such as, frames, engines, wheels, batteries, electronic components, and interior and exterior
parts; various compatibility between machines, robots, and vehicle parts; spatial relations (e.g., locations of
machines, robots, and workstations); and temporal relations (e.g., scheduling and precedence constraints).
Now, although, various types of robots, such as mobile robots for transportation, or robotic arms for ma-
nipulation and assembly, interact with the different workstations, and therefore require different task plans–
all robots on the factory floor would benefit from a task planner that (a) was able to reason over a similarly
large and complex world model and (b) was reasonably stable against small changes in the world.

Defining a formalism that is capable of managing many features of the world within task planning is
among the major contributions of this thesis. As mentioned, there are a number of considerations when
designing a framework for task planning over complex domains. A summary of the three specific problems
we aim to tackle in this thesis are provided below.

6



CHAPTER 1. INTRODUCTION 7

Figure 1.1: An assembly line equipped with many specialized robots

1. Difficulty in expressing complex and structured world states. Current representation frame-
works struggle to capture the rich relations and intricate structure of real-world environments, limiting
the expressiveness of planning domains [37, 86]. This makes it difficult to leverage domain-specific
knowledge and accurately model complex world states with numerous objects and relationships. Al-
though, object typing is included in PDDL 1.2 [51], there is limited consideration for sophisticated type
hierarchies and relations within planning domains in practice. For instance, in the Planners page of the
Planning.wiki, only seven [62, 9, 31, 5, 38, 43, 42] out of 107 planners mention the use of either at type
system or the :typing extension in their work. In these cases typing is used for validating predicates
at best, and not for making more sophisticated inferences based on the world models. Additionally,
existing planning methods do not scale well for a large number of literals– when the number of literals
in the planning problem grows, the complexity of the planning problem increases [37]. This can make
planning intractable for large and complex world states, especially those derived from typed graphs
like scene graphs.

2. Reasoning about transitive relations (composition) More specifically, current methods do not
consider implicit transitive dependencies formed by relations. As a result, they may struggle to reason
about indirect dependencies and interactions that arise from these relationships. In this thesis, we are
particularly concerned with the language’s ability to reason about transitive closure, which we term
composition (of relations or predicates) as we believe this feature will improve the ability to generate
high-quality plans for complex domains. Currently, transitive relations need to be represented through
a thorough and precise enumeration of the relevant propositions or through domain axioms [80]. Both
of which increase the complexity of the search space. In the case of domain axioms, more testing is
required for ensure its stability as a syntax component [30].

3. Difficulty integrating with other AI components to support neurosymbolic reasoning. In-
tegrating task planning with other essential AI components, such as perception and control, remains
a challenge [77]. This is largely due to representation mismatch. Task planners use symbolic, logic-

https://planning.wiki/ref/planners/atoz


CHAPTER 1. INTRODUCTION 8

based languages, while neural approaches for perception use tensors for which both semantics need to
be defined. Here lies a need for an interoperable language that bridges the gap between both repre-
sentations. Integrating these representations can be challenging because it often requires finding an
adequate abstraction for continuous and comprehensive features of the world [3, 50, 34]. Advance-
ments toward perceptual formalisms like scene graphs provide opportunities for integrating neural and
symbolic knowledge. We see our approach as a way of tackling the problem of integrating neural with
symbolic planning by proposing a planning representation that acts on typed graphs while preserving
relationships accounted for by the ontology.

We hope that by addressing these open problems using our planning framework, we will be able to
generate higher quality plans for a range of complex domains.

1.1 Research Questions

Throughout this thesis, we will focus on four guiding research questions.

RQ1 How does the use of more descriptive and structured formalisms for world states during planning,
such scene graphs and ontologies, broaden the applicability of task planning to a wider range of complex
real-world domains?

RQ2 What modifications to existing ontology-based planning architectures can be made in order to pre-
serve the ontological structure throughout the planning process?

RQ3 Can category theory improve the generation of high quality plans for complex domains by providing
clear and consistent formal semantics for typing and transitive closure for task planning?

RQ4 To what extent does the development of a planning language with clear and consistent formal se-
mantics for typing and transitive closure improve the quality of planning solutions, especially for complex
domains?

1.2 Our approach

Complex world states, which often involve numerous objects and intricate relationships, necessitate a robust
representation language capable of capturing the intricacies of the domain. In this thesis, we propose a
novel language, called AlgebraicPlanning, based on C-sets and DPO rewriting from category theory that
leverages the expressive power of ontology-based typed graphs to manage complex world states and the
relationships between objects within them. We assume a fully observable and deterministic environment.
Common formalisms in knowledge representation and robotics, such as knowledge graphs and scene graphs,
are expressible as typed graphs, making this a useful language for reasoning about task plans for robotics
applications.

Additionally, to measure the extent to which our planning framework improves the quality of planning
solutions, we will design a method for assessing the length of plan, success rate, and efficiency in terms
of time and memory between our planning framework and other planning algorithms. The most relevant
planners are ones that handle typing and transitive closure, namely Metric-FF [42] with and without derived
axioms for transitive closure [80]. We also introduce a method for assessing stability [29] of plans relative
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to changes in the planning problem. A prequisite to this method is a novel measurement that we developed
for quickly assessing the distance between planning problems to ensure a fair distribution of problems in
simulation. By providing a systematic way to examine plan stability per changes in the world, we also gain
insight into the relevance of features in the world to achieving a goal.

Through the development of a rich representation language and a method for assessing plan quality, this
thesis aims to contribute to the advancement of AI task planning in dynamic environments, paving the way
for more robust and adaptive intelligent systems. In summary, the following hypothesis is brought forth:

Hypothesis A. We hypothesize that by developing a planning framework that effectively addresses
the challenges of:

(i) representing complex and structured world states,

(ii) reasoning about transitive relations, and

(iii) remaining interoperable with other AI components for neurosymbolic reasoning,

we will be able to generate higher quality plans and enhance the applicability of task planning in
complex real-world domains relative to existing planners.

For this work, we make the following assumptions:

Assumption I. Scene graphs are expressive enough for representing complex and structured world
states for task planning [54, 6, 21].

Assumption II. All typed graphs can be represented as C-sets [18].

Given these assumptions, the main hypothesis can be broken down into the following:

Hypothesis A.1 In support of (i), we claim that all scene graphs can be represented as typed graphs.

Hypothesis A.2 In support of (ii), we claim that C-sets and DPO rewriting preserves transitive
relations expressed in the ontology after every action.

Hypothesis A.3 In support of (iii), we claim that arbitrary scene graphs based on a large num-
ber of entities and relations can be translated into C-sets in polynomial time.

Hypothesis A.4 In support of higher quality plans, we claim that the proposed formalism produces
more concise plans (fewer steps) at an equal or higher success rate than an existing general-purpose
planner, Metric-FF [42], that considers typing with and without transitive closure domain axioms for
a range of domains (those with at least k-entities and m-relations in their ontology, where k = [5, 10,
100], for now, and m will be determined) and problem sizes (those with n-objects in the domain, where
n = [5 : 1000] will depend on the specific domain).

Hypothesis A.5 In support of higher quality plans, we claim that the proposed formalism produces
more stable plans than an existing general-purpose planner, Metric-FF [42], that considers typing with
and without transitive closure domain axioms for a range of domains (those with at least k-entities and
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m-relations in their ontology, where k = [5, 10, 100], for now, and m will be determined) and problem
sizes (those with n-objects in the domain, where n = [5 : 1000] will depend on the specific domain).

So far, we have defined the mathematical formalism, developed a prototype forward planning algorithm,
and begun developing the infrastructure for testing. We aim to definitively evaluate and refine each hypothesis
during the remainder of this work.

1.3 Contributions

We expect this work to have the following contributions:

1. CONTRIBUTION 1 A rich representation planning language based on category theory:
Design and implement a robust language for representing complex world states that can capture various
types of world changes. The language should be expressive enough to model intricate relationships
between objects and facilitate efficient reasoning about the impact of world changes on plan stability.

2. CONTRIBUTION 2 A planning algorithm based on this formalism: Identify a performant
state-based planning algorithm and adapt it to work with the proposed representation language.

3. CONTRIBUTION 3 A method for plan quality assessment: Develop a method for assessing
the quality of plans, including their stability to changes in the world state. This method should provide
a measurement for assessing differences in planning problem to ensure diverse planning problems are
properly represented.

4. CONTRIBUTION 4 Case studies exploring planning in diverse domains: Investigate the
applicability of the proposed approach in different domains, such as classical planning domains, man-
ufacturing, and home service robotics, where complex world states and dynamic environments can be
studied. This exploration can help identify potential improvements and extensions to our approach
and demonstrate its relevance in various application areas.

5. CONTRIBUTION 5 An example and application based wholly in category theoretic
formalisms: Demonstrate the application of category theoretic formalisms to AI task planning at a
variety of problem and domain scales. This exploration provides concrete examples towards applications
of category theory.

Proposal Structure

This thesis proposal is organized into seven chapters that provide a comprehensive exposition of the proposed
approach. Chapter 1 provides the motivation and problem definition for the research, outlines the research
objectives, and presents an overview of the thesis structure. Chapter 2 reviews background and related
work in knowledge representation for planning, task planning, and category theory. Chapter 3 discusses
preliminary results using the proposed formalism to model complex world states. Chapter 4 discusses
preliminary results using the proposed formalism for planning. Chapter 5 provides a sketch of ongoing
results related to measuring problem difference. Chapter 6 summarizes the proposed work, evaluation
method, and timeline. Chapter 7 concludes the proposal by summarizing the problem and proposed
contributions. Appendix A provides a examples of PDDL domain and problem files for the anticipated
experimental domains. Appendix B provides copies of the AlgebraicPlanning implementation. Appendix
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C provides a list of papers, presentations, and extracurricular contributions. Appendix D provides the
reading list for all three research areas.



Chapter 2

Background and Related Work

This chapter is broken out into three main sections: Section 2.1 Knowledge Representation for Planning,
Section 2.3 Task planning, and Section 2.4 Category Theory. These are the main topic areas that will be
leveraged in this work. Here we will provide a background and summary of related work.

2.1 Knowledge Representation for Planning

In this section, we will summarize background and relevant work towards integrating semantic information
using ontology and scene graph formalisms in the task planning process. We aim to examine how semantic
information could be leveraged in task planning to improve its range of applicability to complex real-world
domains.

2.1.1 Existing Methods

There are few candidates for world state representations that capture the desired semantics in a formal
language. The two candidates we compare in this thesis are typed propositions and typed graph formalisms
for world states for their ability to handle typed objects and relations.

2.1.1.1 Using typed propositions

The STRIPS-based representation of world states is based on a restricted form of first-order logic in which
the world states are represented as a conjunction of literals, where a literal is an atomic proposition or its
negation [37]. These propositions can encode facts such as the location of objects, the state of various sensors,
and other relevant information. Logical operators such as AND, OR, and NOT are used to combine these
propositions into more complex expressions that can be used to describe the relationships between different
parts of the world state. World states can be lifted to abstract states consisting of a conjunction of predicates,
where predicates are n-ary relations between typed variables. For example, the predicate on(x - Block,

y - Block)might represent the fact that a block x is on top of another block y or, equally plausible, the
converse. It is important to emphasize that the semantics of the predicates must be established informally,
say through external documentation or word of mouth. A predicate becomes a grounded literal when the
variable symbols, like x and y, are assigned to symbols that are constant. For instance, the grounded literal
on(b1 - Block, b2 - Block) could represent a block called b1 that is on top of a block called b2.

12
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2.1.1.2 Using typed graphs

Typed graphs are powerful tools for adding structure to the objects and relations in robotics applications.
A definition for typed graphs can be found in Definition 2.1.1 [46].

Definition 2.1.1. Let T = (VT , ET ) be a type graph, where VT is a set of node types and ET is a set of
edge types. A typed graph G = (V,E, τv, τe) consists of the following components:

• V is a set of nodes, and E is a set of edges, where each edge is an ordered pair of nodes (u, v)∃V × V .

• τv : V → VT is a node typing function that assigns a type from the set of node types VT to each node
in V .

• τe : E → ET is an edge typing function that assigns a type from the set of edge types ET to each edge
in E.

The typing functions τv and τe are used to associate types with nodes and edges in the graph. They
ensure that each node and edge in the graph G has a corresponding type in the type graph T .

This provides a means to model and reason about the relationships between objects in the environment
based on a type graph, or an ontology. Applications of this can be found amoung the work done to leverage
knowledge graphs [77, 44, 11, 13] and scene graphs [21, 6] as a formalism for modeling world states in robotics.

Knowledge graphs Knowledge graphs are a form of knowledge representation that model relationships
between entities using graph-based structures [44]. They consist of nodes, which represent entities such as
objects, actions, or concepts, and edges, which represent relationships between these entities. Knowledge
graphs provide a flexible and expressive way to represent structured information and enable efficient querying
and reasoning capabilities. In robotics, knowledge graphs are employed to represent and reason about the
relationships between various elements in the environment, such as: spatial relationships between objects
and robots, e.g., ”object A is on the left of object B”; temporal relationships between events and actions,
e.g., ”action A must be completed before action B”; semantic relationships between concepts and entities,
e.g., ”object A is a type of container.” Knowledge graphs are particularly useful for high-level reasoning tasks
in robotics, such as symbolic planning, where the robot must consider complex relationships and constraints
to generate an effective plan.

Scene graphs Scene graphs are a specialized form of knowledge graphs used primarily in computer graphics
and robotics to model the hierarchical structure of a scene [54, 21]. They consist of nodes representing objects,
actions, and spatial relationships, arranged in a tree-like structure that reflects the hierarchical organization
of the scene. Scene graphs enable efficient representation, manipulation, and rendering of complex scenes
by organizing the information in a structured manner. In robotics, scene graphs are employed to represent
the geometric and topological structure of the environment, such as: the hierarchical organization of objects
and their parts, e.g., ”object A is composed of parts B and C”; the spatial relationships between objects,
e.g., ”object A is inside object B”; the relative poses and transformations between objects, e.g., ”object A
is rotated 90 degrees with respect to object B” Scene graphs are particularly useful for geometric reasoning
tasks in robotics, such as motion planning, navigation, and object manipulation, where the robot must
consider the spatial structure of the environment to plan and execute its actions.

We deem typed graphs to be more favorable than typed predicates for the added structure provided by
the type graph, T . This is not only more expressive than typed predicates, but can more naturally be apply
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existing ontologies, such as KNOWROB [77, 11], RoboEarth [78], AfRob [82] and others [69] when defining
world states.

2.1.1.3 The need for transitive (compositional) relationships

Of paramount note is the fact that both representations lack automatic transitive relations which is an
implicit relation that could aid in reasoning about indirect object interactions in the scene. Transitive
relations enable a planner to reason about indirect relationships between objects in the scene. For example,
if object A is on top of object B, and object B is on top of object C, a transitive relation allows the planner
to infer that object A is indirectly on top of object C. This can also be thought of as a composition of
paths from A to C. Transitive relations in scene graphs would also allow for a more compact and efficient
representation of the relationships between objects.

In PDDL, it is possible to incorporate transitive relations using derived predicates in PDDL 2.2 [26], but
they cannot be stated universally and they must be defined for each domain. In typed graphs, it is possible
to incorporate path equations that establish path equivalences for all composable combination of paths, but
this would require inflating edge list to include these additional paths. Both approaches would increase the
computational complexity of the search space significantly.

We hypothesize that this structure can help a planner generate more efficient and valid plans that
consider such indirect relationships, both taxonomical and associative relations. In this thesis, we propose to
demonstrate the value of this property in improving the efficiency and quality of plans in real-world scenarios.

2.1.2 General approaches to integrating semantic knowledge

There has been a concerted effort across robotics to integrate semantic information about the world in
planning and control through ontologies and other typing formalisms [56, 58]. Most efforts are directed
towards directly translating sensor streams into meaningful predicates for planning [12, 65, 47], establishing
default knowledge through axioms and data-driven modeling [78, 79, 57], and converting ontologies to task-
relevant predicates [33, 41, 87, 19]. However, there are few examples that directly integrate ontologies to
enrich world states for robot task planning based on the widely-accepted formalism, PDDL [36].

Among the aforementioned, only the work by Galindo et al [33] and Cashmore et al [19] fit this criteria.
Cashmore et al [19] designed an framework called ROSPlan that contains two components, a knowledge-base
and a planning system. The architecture is illustrated in 2.1(b). The knowledge base includes an ontology
subcomponent that is provided by the experts of the domain and can be expressed using the Web Ontology
Language (OWL) [10]. Another subcomponent interprets sensor readings from the agent and augments the
knowledge base with scene information based on the ontology. To initiate planning, a domain file must be
provided by an end user and the initial state is populated based on the knowledge base and according to
the specifications of the domain file. Overall, this framework proposes a reasonable high-level architecture,
however, the specific details about how information is translated at every interface is not provided, making
it difficult to state how this architecture will behave on a range of domains and planning problems.

Galindo et al [33] use a two-part knowledge representation system, which includes (i) spatial information
about the robot environment in the form of a scene graph, called S-Box, and (ii) an ontology that describes the
hierarchical relationships between concepts, called T-Box. A total function mapping from literal objects in
the spatial graph to terminological concepts in an ontology is defined, as shown in Figure 2.1(a). Predicates
observed in the S-Box along with predicates observed in the T-Box are translated into PDDL predicates
forming the initial state. From here, planning proceeds as normal using an existing typed planner, namely
Metric-FF [42]. The benefits of this approach is the ability to make use of the full ontology to add implicit
information as predicates to the world state based on the hierarchy supplied by the T-Box. However, after
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the information is sent to the planner, the semantic enrichments to the domain via concept axioms are lost.
This makes it impossible to ensure that the concepts are preserved throughout the planning process. For
example, an action might cause the robot to move a bed from the bedroom to the kitchen, in which case,
it is unclear as to whether that should be valid or invalid within the semantic model. The choice is up for
debate, however, we believe that the decision of whether th semantic model is violated by an action should be
unambigous within the formalism. Our approach aims to preserve relationships declared in the ontological
model throughout the planning process.

((a)) Method for relating spatial information, S-Box,
and terminological information, T-Box, proposed by
Galindo et al [33]

((b)) Architecture for incoporating ontology informa-
tion into the planner proposed by Cashmore et al [19]

Figure 2.1: Proposed methods for integrating semantic information during task planning

2.2 Integrating scene graphs

The recent invention of scene graphs has led to the development of a few more frameworks that attempt
to make efficient use of these descriptive models of the world during task planning. Scene graphs are a
specialized version of knowledge graphs that restrict its objects, attributes, and relations to facts obtained
through vision-based perception and inference [54, 6, 21]. In scene graphs, ontologies are often used to align
scene data to class hierarchies. However, approaches, as in the previous case, are scarce. We have identified
a few attempts [2, 64] to make effective use of scene graphs, as formally defined, in task planning.

Agia et al [2] tackles the problem of managing the complexity of scene graphs for task planning. Scene
graphs are a useful abstractions for representing an environment perceived by a robot, but are often too
complex, with numerous vertices and edges, making them difficult to reason over at scale. To mitigate this,
planners can employ procedures that determine which attributes of the scene are most relevant while also
preserving the semantics provided by the class hierarchy and object features. An example of a planner
designed for this purpose is the SCRUB planner [2]. SCRUB is a planner-agnostic procedure that prunes the
state space to include only the relevant facts within a scene graph. It is paired with SEEK [2], a planner-
agnostic procedure that scores objects in the scene based on an importance score produced by a graph
neural network [72]. All objects that are ancestors to the relevant objects, according to some threshold, are
preserved as facts in the state. Both the SCRUB and SEEK procedures dramatically reduce the number of
facts needed to characterize the world state. The facts in the world are translated into binary predicates and
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passed to a classical planner. This provides a heuristic-based measure for identifying relevant facts which are,
like most heuristics, subject to limitations, such as inaccurate approximations. The combinatorial approach
we propose uses the existing semantic structure to determine relevance of objects and relationships within
the scene.

Miao et al take an alternate approach to using scene graphs to describe world states and action models
[64]. In their approach, action operators are specified in terms of an initial state subgraph, a final state
subgraph, and an intermediate subgraph. For each object and relation in these subgraphs, the global scene
graph is updated by adding objects into the scene graph that are discussed in the action model. An action is
applicable if the global scene graph includes objects from the initial subgraph. If objects are referenced in the
final state subgraph that are not present in the scene, they are introduced as isolated vertices. These vertices
are connected to the global scene graph by consulting an external knowledge base, such as ConceptNet [73],
that contains a type hierarchy. Their procedure searches for a matching object type, identifies a parent
type that exists in the scene graph, and defines an edge from that object to the existing type. This is a
fragile approach to resolving changes in the world state because it relies on an external knowledge base to
be correctly and completely instantiated in order for new information to be properly integrated.

Jiao et al [48] presents a method for efficient sequential task planning using a 3D scene graph rep-
resentation called contact graph+ (cg+). This representation abstracts scene layouts by identifying valid
robot-scene interactions. Goal configurations can be naturally specified on contact graphs and produced by
a genetic algorithm with a stochastic optimization method. A task plan is then initialized by computing the
Graph Editing Distance (GED) between the initial contact graphs and the goal configurations, which gener-
ates graph edit operations corresponding to possible robot actions. The strengths of this method include its
ability to bridge robot perception and execution by organizing scene entities and predict outcomes of actions
using graph edits. They highlighted the fact that robots successfully completed complex sequential object
rearrangement tasks that are difficult to specify using conventional planning language like Planning Domain
Definition Language (PDDL), demonstrating the high feasibility and potential of robot sequential task plan-
ning on contact graph. One limitation of this method is that it not suitable to for non-manipulation tasks.
Additionally, the method relies on the availability of accurate 3D scene information prior to constructing the
contact graph representation.

Overall, incorporating semantic information into the representation for world states during planning
has gained some attention. These methods satisfy the need to support rich and complex representations
of the world using ontologies but still suffer from an inability to preserve ontological information within
the planning process for a wide range of tasks. In our approach, the ontology is an integral part of the
planning formalism, with which comes with specialized tooling for manipulating such data. Additionally,
because objects and relations from the ontology are used to identify relevant substructures in the graph, we
hypothesize that our approach will be able to scale to large scene graphs without the need for predicting
object relevancy.

2.3 Task planning

In this section, we go over the model for planning based on the state transition system. We also discuss
some of the common representation languages used in symbolic planning, namely STRIPS and PDDL and
their strengths and limitations in expressivity.
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2.3.1 State Transition System Model of Planning

The state transition system model of planning is a formal representation of a planning problem that describes
the state space of the problem and the possible actions that can be taken to move between states. In this
model [37], a planning problem can be defined as a tuple P = ⟨S,A, γ⟩, where:

• The state space S = {s0, s1, s2, ...} is the set of all possible states. A state s ∈ S represents a snapshot
of the world at a particular point in time. It ideally includes all relevant information about the state
of the world, such as the location of objects and their properties.

• The action space A = {a0, a1, a2, ...} is the set of all possible actions. An action represents a transition
from one state to another state.

• The transition function γ : A × S → S is a partial function that, where it is defined, maps an action
and a state to the next state.

• An action a ∈ A is applicable at state s ∈ S if γ(a, s) is defined. A plan, π = ⟨a1, a2, . . . , an⟩, ai ∈ A, is
any sequence of actions. It is a solution to the planning problem if it transitions from the initial state
s0 to the goal state sg, i.e., γ(ai, si−1) = si for i = 1, . . . , n and sn = sg.

The state transition system model of planning is often used in automated planning systems, which use
search algorithms to explore the state space and find a sequence of actions that achieves the goal. The
search algorithms typically use heuristics to guide the search and improve its efficiency. The state transition
system model of planning provides a structured and formal way to represent planning problems and reason
about the possible sequences of actions that can be taken to achieve a goal. The manner in which states,
actions, and transition functions are represented both classically and categorically is a focal comparison in
this thesis.

2.3.2 STRIPS (Stanford Research Institute Problem Solver)

STRIPS (Stanford Research Institute Problem Solver) is a planning formalism that was developed in the late
1960s and early 1970s by Richard Fikes and Nils Nilsson [28] at the Stanford Research Institute. STRIPS is an
early example of an automated planning system and is often used as the basis for other more complex planning
systems. The STRIPS planning formalism adheres to the state transition system model and represents the
world as a set of states. The planning problem involves finding a sequence of actions that transforms an
initial state into a goal state.

In STRIPS, the world is represented as a set of propositions or predicates. Actions are defined with
preconditions, which must be satisfied for the action to be executed, and effects, which describe the changes
that occur in the world when the action is executed. The effects of an action are represented as two sets: the
add list and the delete list. The add list contains the predicates that become true when the action is executed,
while the delete list contains the predicates that become false. The planning process in STRIPS consists of
searching through the space of possible action sequences to find one that starts from the initial state and
reaches a state that satisfies the goal conditions. This is typically accomplished using search algorithms,
such as depth-first search or best-first search, combined with heuristics to guide the search process.

More formally, STRIPS can be represented as a state-transition system, as discussed in Section 2.3.1. A
STRIPS planning problem can be formulated using the following tuple [28]: STRIPS = (P,A, I,G)

• P : A finite set of predicates that describe properties of the world state. The world state is represented
as a set of ground literals, which are instantiations of these predicates.
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• A: A finite set of actions, where each action a is represented as a tuple (pre(a), add(a), del(a)):

– pre(a): Precondition list, a set of ground literals that must be true in the current state for the
action to be applicable.

– add(a): Add list, a set of ground literals that become true after the action is executed.

– del(a): Delete list, a set of ground literals that become false after the action is executed.

• I: The initial state, which is a set of ground literals representing the properties that hold true at the
beginning of the planning process.

• G: The goal, which is a set of ground literals representing the properties that must hold true in the
final state after the plan is executed.

A solution to a STRIPS planning problem is a sequence of actions that, when executed in the initial state I,
leads to a state where all the literals in the goal G hold true. The planning process involves finding such a
sequence of actions that satisfy the goal while respecting the preconditions and effects of the actions. STRIPS
planning formalism laid the foundation for many subsequent planning representations, such as ADL (Action
Description Language) and PDDL (Planning Domain Definition Language), which extended and improved
upon the original STRIPS concepts.

2.3.3 PDDL (Planning Domain Definition Language)

PDDL (Planning Domain Definition Language) is a language that provides an extension to STRIPS that
supports a richer set of features, such as typed variables, temporal planning, and numerical fluents [36]. A
PDDL problem specifies actions, objects, and goals, as well as the initial state of the problem. Currently,
PDDL is the most widely used specification language for planning problems and domains. While PDDL
seeks to represent the planning problem as a state-transition system, a formal semantics that pairs with its
syntax: there is no precise mathematical definition of its meaning [30]. In any case, there does exist a formal
definition of the PDDL syntax. The PDDL language describes planning problems in a domain-independent
way, separating the domain description from the problem description [37].

A PDDL domain description, based on PDDL1.2 [51],consists of:

• A finite set of types, which define the categories of objects in the domain.

• A finite set of predicates, which describe properties of objects and their relationships.

• A finite set of actions, where each action is specified with parameters, preconditions, and effects.

A PDDL problem description consists of:

• A finite set of objects, which belong to the types defined in the domain description.

• An initial state, which is a set of ground literals (instantiations of predicates) describing the properties
of the objects that hold true at the beginning of the planning process.

• A goal, which is a set of ground literals representing the properties that must hold true in the final
state after the plan is executed.
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An example domain and problem file for a domain designed for Blocksworld can be found in Appendix
A.

PDDL also includes numerous language extensions that add useful features to PDDL including prefer-
ences [35], temporal constraints [66], and support for negative literals [30]. While these extensions make
PDDL a more powerful and flexible language for specifying planning problems and domains, they also in-
troduce additional complexity and possibilities for inconsistency when used with planning algorithms [45]
as its not clear how these extensions universally impact the search space. Therefore, developing a language
with clear and consistent formal semantics in planning is crucial for improving the performance of planners.
In our approach, we aim to provide formal semantics for transitive closure and typing within the planning
process to improve the overall plan quality.

2.3.4 Assessing Plan Quality

Plan quality as an evaluation metric can be broken down into a number of features about the plan and the
planning process. Some common criteria used to assess plan quality in AI planning include [45]:

• Plan length: This refers to number of sequential steps in a plan that achieve a goal.

• Efficiency : This refers to how quickly the plan can be executed and how well it makes use of available
resources.

• Success Rate: This refers to whether the plan is able to achieve the desired goal in a variety of possible
scenarios.

• Stability : This refers to how robust plans are in light of syntactic or semantic changes in the environment
[29].

• Flexibility : This refers to how easily the plan can be adapted to changing circumstances or new
information.

These criteria can be used individually or in combination to assess the quality of a plan generated by a
planning system. All of the above criteria would be useful for assessing plan quality in our approach,
however, we will omit measuring flexibility of plans generated as this would require substantial effort to
create an effective adaptation algorithm within the scope of this project. This is left for future work.

2.3.4.1 Experiment set-up

Howe and Dahlman [45] summarize the canonical experiment set-up for benchmarking planning algorithms
as shown in Figure 2.2. This will be more or less adhered to in the evaluation of our approach. The details
are discussed in Chapter 6.

2.4 Category Theory

In this section, we will motivate the cause for using category theory, provide definitions that serve as the
necessary foundations to category theory, summarize the related work.

Eilenberg and MacLane [27] introduced the concepts of category theory in the mid-1940s during their
study of algebraic topology as a way to transfer theorems between algebra and topology. In doing so, they
provided a mathematical language that lifts many mathematical and non-mathematical concepts to the
notion of maps between entities and compositions of those maps. It provides a mathematical framework
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Figure 2.2: A canonical experiment setup for evaluating planners described by Howe and Dahlman [45]

that aids in understanding the structure of, and relationships between, different mathematical objects and
places a particular emphasis on preserving composition in higher-order mappings. There has also been
considerable effort in recent years to employ such structures in defining a generic framework for consist and
formal manipulation of ontology-backed databases [18, 68, 75, 67, 74].

It has also found important applications in a variety of fields, including systems engineering and design
[16, 17, 20], model-driven engineering for software system design [53, 24], and physics [8, 1]. Category theory
has been applied to engineering and scientific problems in various domains such as database migration
[76, 74]; heterogeneous information and sensor fusion [70, 49, 52]; scientific knowledge representation [40];
and automated assembly planning [15]; however, there are few compelling examples in the field of artificial
intelligence. The few examples in robotics and planning [3, 4, 63] illustrate some promising use cases, but
none have been tested on a wide range of problems at meaningful scales.

In this thesis, we seek to extend the application of category theory to AI task planning to address the
problem of ensuring high quality plans over complex domains.

In Chapter 4, we claim that this can be done by viewing the symbolic planning problem as a series of
structure-preserving graph rewrites over typed graphs.

2.4.1 Core concepts of category theory

Prior to discussing the formal definitions, we would like to provide an introductory exposition to category
and its core concepts. When approaching a new mathematical language, it is helpful to remember that such
structures are languages that supply the types and grammar that can be used to discuss a given concept.
For example, graphs possess only two types: (i) nodes and (ii) edges. They also have only one grammar
rule, that being: an edge can only exist between at most two nodes. Much can be said using these types and
grammar rules, but also that is much that needs to be translated to other structures to model more complex
concepts.

Category theory defines the following types: (i) objects and (ii) morphisms. At a glance, the cardinality
of types in graphs and categories seem to imply that they have equal expressive power. However, categories
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are equipped with a laundry list of grammar rules that allow for a richer set of constructions. This list
provides a foray into the foundational grammar rules.

• Morphisms are directed relations, like arrows, that exist between at most two objects, a source and a
target.

• Morphisms can be composed if the target of the precomposed arrow is equal to the source of the
postcomposed arrow.

• This operation is associative.

• There exists a special arrow called the identity arrow for every object that sends the object to itself

• Categories consist of a collection of objects and morphisms.

This provides the basic rules for a category. The most prominent feature of this language is the notion of
composition of morphisms. Because of the simplicity and generality of these definitions, this gives freedom
to embed more complex structures within each concept while still maintaining closure within the categorical
language. For example, it is possible to consider a category on its own as an object and a morphism between
categories as objects as a functor. A functor is defined as a map between objects and morphisms of categories
such that the composition of morphisms is preserved on both sides of the map. It is also possible to describe
further restrictions on the definitions of objects and morphisms, such as a morphism between categories is a
functor that only maps objects to objects and ignores arrows, namely a bijection-on-objects functor. Another
example might be that we want to restrict objects in a category to only consist of sets and arrows to be
functions– which forms the Category of Sets.

To summarize and expound, category theory revolves around a few fundamental concepts that serve as
the building blocks for its applications in computer science [55]:

• Categories: A category consists of objects and morphisms (arrows) between those objects, satisfying
specific properties. Objects can represent different types of entities, while morphisms represent the
relationships or transformations between objects.

• Functors: A functor maps a category to another category, preserving the structure of the original
category. Functors translate objects and morphisms between categories while maintaining their rela-
tionships. They can also be viewed as a way to construct categories from other ones.

• Natural Transformations: A natural transformation is a higher-order structure that relates two func-
tors. It provides a way to compare and transform functors while preserving their underlying structure.

• Limits and Colimits: Limits and colimits are universal properties in category theory that capture the
essence of various types of aggregation and decomposition of objects and morphisms.

2.4.2 Categories, functors, natural transformations

A more formal definition of a category can be seen in Definition 2.4.1.

Definition 2.4.1 (Category). A category C consists of a collection of objects, denoted Ob(C); for every pair
of objects x, y ∈ Ob(C), a collection HomC(x, y) of morphisms from x to y, whose elements f ∈ HomC(x, y)
are denoted f : x→ y; a composition operation, defining for each pair of morphisms f : x→ y and g : y → z,
a composite morphism g ◦ f : x→ z; for every object x, an identity morphism 1x : x → x; satisfying the
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associativity law h◦ (g ◦f) = (h◦g)◦f and unitality laws f ◦1x = f and 1y ◦f = f whenever these equations
make sense.

Categories are themselves the objects of a category, whose morphisms are called functors. A functor
consists of compatible maps between the objects and between the morphisms that preserve composition and
identities.

Definition 2.4.2 (Functors). A functor F from a category C to another category D, denoted F : C → D,
consists of a map between objects F : Ob(C)→ Ob(D), and for every pair of objects x, y ∈ C, a map between
hom-sets F : HomC(x, y)→ HomD(F (x), F (y)), such that the following equations hold:

• F (g ◦ f) = F (g) ◦ F (f) for every x
f−→ y

g−→ z in C;

• F (1x) = 1F (x) for every x ∈ C.

There can also exist morphisms between functors, called natural transformations.

Definition 2.4.3 (Natural Transformation). Let C and D be categories, and let F and G be functors from
C to D. A natural transformation η from F to G is a family of morphisms in D, indexed by the objects of
C, such that for each object X in C, there is a morphism ηX : F (X)→ G(X) in D, satisfying the following
naturality condition: for every morphism f : X → Y in C, the following diagram commutes in D:

F (X)
ηX−−→ G(X)

↓ F (f) ↓ G(f)

F (Y )
ηY−−→ G(Y )

2.4.2.1 Some notable functors and natural transformations

Of the many constructions that can be performed using categories and functors, we mention just a few that
are used in the thesis.

Definition 2.4.4 (Grothendieck Construction, Category of Elements). Let F : C → Set be a functor from
a small category C to the category of sets and functions. The category of elements of F , denoted

∫
F , is the

category whose

• objects are pairs (c, x), where c ∈ Ob(C) and x ∈ F (c);

• morphisms from (c, x) to (d, y) are morphisms f : c→ d in C such that F (f)(x) = y.

Composition and identities in the category of elements are inherited from those in C [55].

Lemma 2.4.1 (Yoneda Embedding). The Yoneda embedding is the full and faithful functor Cop → [C,Set]
that sends:

• (objects) c 7→ Hc, where Hc(d) := HomC(c, d) is the representable functor;

• (morphisms) (c
f−→ d) 7→ (Hd Hf

−−→ Hc), where Hf is the natural transformation between representable
functors given by precomposition with f .



CHAPTER 2. BACKGROUND AND RELATED WORK 23

Definition 2.4.5 (Diagram, D). Let C be a category and I be an index category. A diagram D of shape I
in the category C is a functor D : I→ C. In other words, a diagram assigns an object in C to each object in
I and a morphism in C to each morphism in I, such that the following conditions hold:

1. For every object i in I, there is an object D(i) in C.

2. For every morphism f : i→ j in I, there is a morphism D(f) : D(i)→ D(j) in C.

3. For every pair of composable morphisms f : i→ j and g : j → k in I, D(g ◦ f) = D(g) ◦D(f).

4. For every object i in I, D(idi) = idD(i).

A diagram in category theory can be thought of as a functor that assigns an index category, I, to a
substructure of another category, C.

Span A span is a diagram that will appear several times throughout this thesis. It it a diagram with an
index category containing three objects and two morphisms arranged like

X Z Y
f g

f is called the left leg of the span and g is called the right leg of the span. Z is called the apex of the span.

2.4.3 Universal properties

Objects in categories can satisfy universal properties such as having limits or colimits [55]. Limits and
colimits are taken over diagrams in a category. Let J be a small category. A diagram of shape J in a category
C is a functor D : J→ C.

Definition 2.4.6 (Limit). Let D : J→ C be a diagram.

• A cone over D is an object x ∈ C and a family of arrows in C, (x
fj−→ D(j))j∈J, such that the triangle

D(j)

x

D(k)

Du

fj

fk

commutes for every morphism u : j → k in J.

• A limit of D is a cone (L
πj−→ D(j))j∈J over D with the property that for any cone over D as above,

there exists a unique map f : x→ L such that πj ◦ f = fj for all j ∈ J.

Colimits are defined dually to limits.

Definition 2.4.7 (Colimit). Let D : J→ C be a diagram.
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• A cocone under D is an object x ∈ C and a family of arrows in C, (D(j)
fj−→ x)j∈J such that the triangle

D(j)

x

D(k)

Du

fj

fk

commutes for every morphism u : j → k in J.

• A colimit of D is a cocone (D(j)
ιj−→ C)j∈J under D with the property that for any cocone under D as

above, there exists a unique map f : C → x such that f ◦ ιj = fj for all j ∈ J.

Colimits can be obtained over a variety of diagrams. Of relevant note to this thesis, is the colimit over
a span, defined earlier. A colimit of a span is called a pushout and it forms a pushout square.

Definition 2.4.8 (Pushout). Let A be a category, and take objects and maps

Z Y

X

s

t in A. A pushout

of this diagram is an object P ∈ A with maps p1 : X → P and p2 : Y → P such that

Z Y

X P

s

t p1

p2

commutes.

Pushout in Set For the category of Set, a pushout can be thought of as a disjoint union joined along the
set in the apex of the span.

2.4.4 Existing applications of category theory in computer science

In addition to the aforementioned list, we wish to highlight applications of category theory to the field of
computer science, including: programming languages, type systems, domain-specific languages, and formal
verification. In the case of programming languages, category theory has influenced the design of functional
programming languages, such as Haskell, by providing concepts like monads, functors, and arrows [81].
These abstractions enable powerful and expressive ways of structuring programs and reasoning about their
behavior. The field of homotopy type theory has also benefited from category theory concepts by using it
to develop more expressive and flexible representations of data structures and algorithms [60, 7].

The most relevant applications of category theory to this work are those related to data modeling,
knowledge representation, and graph transformation systems. Category theory has been used to model
and reason about complex data structures and knowledge bases, providing a means for expressing and
manipulating structured information. This is most notably found in Spivak [76, 74] and Pattersons [67]
exploration of ontology-logs, or o-logs, and functorial data migration. In these works, category theory has
been used to model and reason about ontologies, providing a mathematical framework for expressing and
manipulating structured information. It has also been shown to be interoperable with resource description
format (RDF), a semantic web standard data format [74]. In the context of databases, category theory has
been utilized for schema mapping and integration. Functors can be used to represent the transformation of
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data between different schemas, while natural transformations can express the relationships between different
schema mappings. This enables a systematic approach to integrating and transforming data across diverse
databases.

2.4.4.1 Functorial data migration

Functorial data migration is an approach rooted in category theory that offers a structured and rigorous
framework for transforming and migrating data between different schemas introduced by Spivak in 2012 [74].
Here Spivak presents a framework for representing database schemas and instances using category theory.
In this framework, a database schema is represented as a small category, where the objects of the category
represent the tables in the schema and the morphisms represent the relationships between the tables. An
instance of the schema is then represented as a set-valued functor on the category, where the functor assigns
to each object (table) a set of rows and to each morphism a function that represents the relationship between
the rows of the corresponding tables.

The paper shows that given a morphism between two schemas (represented as categories), there are
three “data migration functors” that can be used to translate instances from one schema to another in a
canonical way. These functors parameterize projections, unions, and joins over all tables simultaneously and
can be used in place of conjunctive and disjunctive queries.

Overall, this framework provides a rigorous and mathematically well-founded approach to representing
and manipulating database schemas and instances using category theory. This framework can be adapted to
our problem by treating the desired ontology as schema category and the instances of classes in the ontology,
obtained through perceptual means, as the sets. More details about this implementation can be found in
Chapter 3.

2.4.4.2 Graph rewriting systems

Category theory has contributed to the development of graph transformation and rewriting systems, offer-
ing a general framework for expressing and analyzing complex graph-based algorithms and data structures
[18]. In particular, category theory has been used to formalize and analyze graph transformation systems,
where graphs are used to represent structures and transformations between graphs represent computational
steps. The Double-Pushout (DPO) approach is a widely-used category-theoretic formalism for graph trans-
formation, based on the concepts of pushouts and pullbacks, which allows for a precise and compositional
description of graph rewriting rules. In this context, category theory provides a way to model and rea-
son about the structure and behavior of term rewriting systems, offering insights into their properties and
correctness. More details about this is applied to planning can be found in Chapter 4.

In summary, category theory provides a versatile and powerful framework for understanding and mod-
eling abstract structures and relationships in computer science. Its applications span a wide range of areas,
including programming languages, systems engineering, physics, and scientific modeling, enabling the devel-
opment of more expressive, flexible, and rigorous software systems and tools. However, even more relevantly,
category theory has been applied to various aspects of data modeling and knowledge representation, such
as ontologies, database schema mapping, and knowledge representation formalisms. By leveraging the ex-
pressive power and compositional nature of category theory, these applications benefit from a rigorous and
flexible framework for reasoning about complex relationships, structures, and algorithms. Throughout this
thesis, we will draw heavily on these branches of application.



Chapter 3

Preliminary Result I - C-set for representing
complex world states

In this chapter, we will cover preliminary work that demonstrates how C-sets from category theory can be
used to represent typed graphs. This is a useful formalism for encoding complex world states containing
many objects and relations.

3.1 Our approach: Using C-sets

To retain the benefits of typed graphs while incorporating transitive relations, otherwise known as composi-
tional relations, we propose the use of the C-set formalism introduced by Spivak in 2012 [74]. This is possible
because all typed graphs can be expressed as C-sets according to [18]. The key feature of this formalism is
its ability capture the relationship between logical syntax (theories) and semantics (models) while preserving
compositional structure using functors. This paradigm is known as functorial semantics [61]. This differs
from the standard formalism of first order logic because it gives the syntax of the language, which we can
consider the ontology, as an algebraic object independent of its semantics. An illustration of a C-set can be
found in Figure 3.1.

This representation provides a denotational semantics for typed graphs using the category C-Set. Let
C denote a small category, called a schema. A C-set, also known as a copresheaf on C, is a functor from C
to the category Set. The schema is a category whose objects we interpret as types and whose morphisms
describe “is-a” and other functional relationships between types. The category Set is the category of sets
and functions that is providing the instance data, or semantics, about the world state. Thus, a C-set is a
functor that sends types to sets and type relationships to functions. On this interpretation, C-sets are a
simple but useful model of relational databases [75]. It is important to note that the sets are related by
functions and not relations. This adds additional structure to the nature of the relationships that exist
between instances using C-sets. This restriction is necessary to ensure that compositional, or transitive,
relationships are well-defined.

The category of elements (see Definition 2.4.4) of a C-set X, denoted
∫
X, packages the data of X

into a category resembling a knowledge graph. Specifically, a morphism in the category of elements can
be interpreted as a Resource Description Framework (RDF) triple [67], which is a common text-based
serialization format for knowledge and scene graphs. A C-set is depicted in this style in Figure 3.1. A formal
definition of a C-set is provided in Definition 3.1.1.

26
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B = {Sam, Molly}

C = {dog, cat}Animal

Mother

C

favoritePet s

G 

Set

rdf(Sam::Mother, s::favoritePet, cat::Animal)
rdf(Molly::Mother, s::favoritePet, dog::Animal)
rdf(Celina::Child, t::hasMother, Molly::Mother)
rdf(Joseph::Child, t::hasMother, Molly::Mother)
rdf(Celina::Child, t;s::hasMother;favoritePet, dog::Animal)
rdf(Joseph::Child, t;s::hasMother;favoritePet, dog::Animal)

Child A = {Celina, Joseph}

hasMother t

Figure 3.1: An example C-set, G, that stores data about children and their mother’s and their mother’s
favorite pet. The category of elements contains triples analogous to RDF triples.

Definition 3.1.1 (Category of C-sets, C-Set). For a given schema C, the category of C-sets is the func-
tor category C-Set := SetC, whose objects are functors from C to Set and whose morphisms are natural
transformations between those.

The category of C-sets is a topos, an especially well-behaved kind of category in which, for example, all
limits and colimits exist. This will be a useful fact when describing how we transform world states using
actions.

3.1.1 Morphisms between C-sets

For rewriting systems, typically morphisms by C-sets are supplied. These morphisms contain considerable
amount of data, given that they must match components of functors to one another such that they preserve
composition. In practice, this would not be a useful procedure to incorporate into task planning or in any
case. Therefore, a generic morphism matching algorithm was introduced by Brown et al [18] which can be
thought of as a type of structural pattern matching.

The problem of finding a morphism, m : X → Y , between two C-sets, X and Y , can be translated into
a typed constraint satisfaction problem (CSP). This is done by taking the elements of the two C-sets and
using them as the variables and domain of the CSP. Recall that in a constraint satisfaction problem (CSP),
variables are the elements of the problem that can take on different values. The domain of a variable is the
set of all possible values that the variable can take on. The goal of a CSP is to assign a value to each variable
such that all constraints are satisfied [71]. The types in the CSP are given by the objects of the indexing
category C. For each morphism, f : c→ c′, in C and each element, given by X(c), a constraint is introduced.
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The solutions to this CSP are exactly the C-set homomorphisms between the two C-sets which are natural
transformations [18].

This means that the algorithm only considers assignments that satisfy the typing relations. The typed
CSP search space grows by O(nk) where n is the size of the target (Y ) and k is the size of the source (X)
[18]. For reference, a generic graph homomorphism matching problem is NP-complete, making this a more
tractable algorithmic problem to solve than general graph homomorphism matching.

3.1.2 Benefits and limitations of using C-sets

C-sets offer several benefits for planning. By leveraging C-sets, we can preserve composition, which allows for
effective modeling of intricate relationships. Additionally, C-sets enable the expression of negative applica-
bility conditions, which are crucial in representing constraints and restrictions that impact the dynamics of
the world. This will be discussed in Section 4.1.3. They also support quantitative attributes and their eval-
uation, such as addition, subtraction, multiplication, and other arithmetic operations. Lastly, the functional
requirement for relation instances is helpful in guarding against contradictory predicates such objects being
at two places at once which may be possible to express in STRIPS as on(b1 - Block, table - Table)

and on(b1 - Block, floor - Surface).
At the moment, using C-sets to model world states comes with some limitations. One potential challenge

is the need to consider automatic transitive closure when designing the ontology, while beneficial, can be
a non-intuitive process. Additionally, the connection between C-sets and motion planning has not been
explored, which is vital for certain applications like robotics or autonomous vehicles. C-sets also do not
support ordered comparisons, such as less than or greater than relations, limiting their expressiveness when
comparing attributes or evaluating specific conditions. Lastly, this formalism currently only support binary
relations between objects; whereas, in formal ontologies, it is possible to express n-ary relations.

In summary, while C-sets offer numerous benefits for modeling world states, it is important to be aware of
their limitations and consider alternative methods or augmentations if necessary, depending on the particular
application. An implementation of C-sets can be found in the Julia package Catlab.jl. An example of a world
state defined using C-sets can be found in Appendix B.1.2.1 and B.1.2.2.

https://github.com/AlgebraicJulia/Catlab.jl/blob/master/src/categorical_algebra/CSets.jl


Chapter 4

Preliminary Result II - Planning using C-set
and DPO rewriting

In this chapter, we discuss the preliminary work done to describe a planning language based C-sets and
double-pushout (DPO) rewriting. Aside from being expressive enough to execute planning over typed graphs,
it also provides the additional benefit of preserving compositional relationships found in the schema category,
or ontology. This chapter presents an example of how an action in the proposed representation differs from
actions in the STRIPS-PDDL representation.

In particular, we propose a change to scene graph planning architectures that instead lifts components
of the framework to the shared language we will discuss in this chapter. Figure 4.1 illustrates the shift
from a multi-language architecture for planning over scene graphs to a single language architecture. To
understand the limitations of existing work in this space, we refer the reader to Chapter 2 for a review.
Our proposed architecture eliminates the need for translating into an alternate planning representation and
instead consider plans as a sequence of rewrite rules applied to the scene graph.

4.1 Our approach: Using C-sets and DPO rewriting

We propose using C-sets and a procedure for adapting world states called double-pushout (DPO) rewriting
in a way that aligns with the state-based transition system planning model described in Section 2.3.1.

4.1.1 Action as Spans in C-Set

Action rules are specified as spans in C-Set. Action rules are made up of components similar to those of
action schemas in classical representation. Specifically, actions rules are spans (I ←↩ K → O) in C-Set
that consists of the precondition, I, on the left-hand side, the effects, O, on the right-hand side, and the
glue, K, in the middle, which gives the data that remains unchanged between the input and the output.
During implementation, we choose to present spans of C-sets as colimits of representable functors. This
conversion is possible because, for every C-set, F , in the action rule, a natural transformation exists from F
to a representable functor on C, as per the Yoneda embedding (see Lemma 2.4.1). Covariant representable
functors, as defined in Definition 4.1.1, map objects, A ∈ C to the set of morphisms that have A as its source
object. This conversion also provides us with the the added benefit of matching the implicit substructure
when an object, such as A, is explicitly identified.

29
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Existing Architectures

Proposed Architecture

Figure 4.1: A comparison of scene graph architectures and our proposed architecture. The existing archi-
tectures summarized here are [64, 33, 2, 19]

Definition 4.1.1 (Representable Functors). A (covariant)1 representable functor, HA : C→ Set, is functor

that sends: (objects) x ∈ C, x 7→ C(A, x) (morphisms) x
f−→ y 7→ C(A, x)

HA(f)−−−−→ C(A, y), where C(A, x) is the
set of all morphisms from A and x in the category C. HA(f) postcomposes f with morphisms in C(A, x).
The functor HA can also be written as [C,Set].

The categorical rule specification differs from the classical one in that it takes a declarative approach
by not articulating what atoms should be added and removed from the state, but rather discussing what
should be in the state and resolving conflicts using the double-pushout (DPO) rewriting procedure which is
discussed in Section 4.1.3.

1A representable functor can defined from a covariant (HA : C → Set) or a contravariant (HA : Cop → Set) view [61].
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4.1.2 Applicability using Monomorphisms

Recall that in classical planning, a precondition is satisfied by a world state when its propositions are a subset
of the world state or if there exists a logical entailment between the precondition and the world state. In the
category-theoretic context, these notions are generalized via monomorphisms. Monomorphisms generalize
the concept of an injective function to arbitrary categories. In Set, monomorphisms are precisely injective
functions. In C-Set, monomorphisms are natural transformations such that every component is an injective
function, e.g., a monomorphism between graphs is a graph homomorphism such that the vertex and edge
maps are both injective. The monic condition (see Definition 4.1.2) applied to morphisms is relevant for
applicability because it checks that two entities in the precondition cannot be mapped to the same entity in
the world state.

Definition 4.1.2 (Monomorphism). A morphism f : x→ y in a category C is a monomorphism, or monic
for short, if for any other object z and any pair of morphisms g1, g2 : z → x, we have g1 = g2 whenever
f ◦ g1 = f ◦ g2.

z x y
g1

g2

f

In other words, a morphism f is monic if whenever two morphisms have the same post-composite with f ,
then they must be equal.

As mentioned earlier, additional objects and morphisms may be identified beyond what is explicitly
expressed in the rule because it is implemented using representable functor. The expanded structure serve
as additional constraints, therefore, limiting the number of applicable rules for a given world state.

4.1.3 Transition using Double-Pushout (DPO) Rewriting

The novel insight we provide is that action rules are exactly double-pushout (DPO) rewriting rules. Double-
pushout (DPO) rewriting is a type of graph rewriting that is particularly well-suited for algebraic approaches
to graph transformation. In fact, DPO rewriting generalizes directly from graph rewriting to C-set rewriting
[18]. The DPO method, described below, is used to compute, for a given rule, all possible matches of world
with the preconditions and determine which matches are compatible with the effects. The result is a set of
transformation steps that can be applied to the target graph.

I K O

X Z Y

l r

m f

g

⌟⌟

DPO rewriting relies on the fundamental concept of a pushout. A pushout is a colimit (See Appendix
2.4.7) of a diagram having the shape of a span (• ← • → •). Given a span R← Q→ S, a pushout produces
an object that resembles the union of R and S joined along Q, (R ∪ S)/Q. A pushout in C-Set is computed
by taking the disjoint union of the sets being pushed out, adding the relations between sets based on C,
and quotienting by Q. Pseudocode for the DPO rewriting procedure is given in Algorithm 1. The first
step is to find a monomorphism, m, that matches I in X, as described in the previous subsection. The
pushout complement, f , is computed provided the morphisms l and m. A pushout complement is a map
that manages the deletion of entities that form the complement K/I. Because i is a monomorphism and we
assume the identification and dangling conditions [18] are met, the pushout complement exists and is unique
up to isomorphism. Having constructed the three sides of the square, l,m, f , the pushout square can be
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Algorithm 1 Double-Pushout (DPO) Rewriting

Require: (action rule) I ←↩ K → O ∈ C-Set
Require: (world) X ∈ C-Set
m = FindHomomorphism(I,X)
f = ComputePushoutComplement(l, m)
g = CompletePushout(l, f , m)
Y = ComputePushout(f , r)

Precondition EffectGlue

IntermediateInitial Final

Action Rule

World State

Figure 4.2: An illustration of how DPO rewriting is executed on a C-set where C defines the shapes and the
arrows between them. Each shape in the figure is assigned to a color to help with readability.

Representation Categorical Classical

State, S Object in category C-Set Conjunction of propositions
Action, A Spans in C-Set containing: Pre-

conditions, Glue, Effects
Action model containing: Param-
eters, Preconditions, Effects

Applicability Monomorphisms in C-Set Subset inclusion
Transition, γ DPO rewriting Set-based addition and subtrac-

tion

Table 4.1: A summary of the differences between the classical representation and the categorical represen-
tation aligned to the state transition system model for planning

completed by a unique map g. Then, to compute the new world state, the right pushout square is computed
provided f and r.

The complexity of the FindHomomorphism() subroutine is O(nk) where k is the size of I and n is the
size of the relevant substructure in X which is dictated by the objects in I [18] as discussed in Section 3.1.1.
The complexity of the remaining subroutines is the same as that of computing pushouts in Set which is O(p)
where p is the sum of the sizes of the sets involved in the span.

As an example, Figure 4.2 shows how an action rule changes the initial state to the final state. In this
figure, the rule states that the circle in the initial state should be replaced by a trapezoid and the square
and triangle should persist. The initial state, bottom-left, satisfies the precondition because it contains
a matching pattern involving the square, triangle, and circle. This means that a monomorphism can be
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identified from the precondition to the initial state. The intermediate state is the result of identifying a
pattern that, when joined with the precondition along the glue, produces the initial state. This removes
the circle from the initial state. The final state is then constructed by taking the pushout for the span
(Intermediate ← Glue → Effect). This produces a pattern where a trapezoid is added in place of the
original circle. The example shown in Figure 4.2 demonstrates that rules can involve both the creation and
destruction of entities in the world if the precondition contains an entity and the effect does not contain that
entity. This allows for a non-monotonicity in updates of the world state.

Handling negative conditions The categorical representation is capable of handling constraints in the
form of negative preconditions and effects using DPO rewriting with negative application conditions (NACs)
[39]. NACs are a way of restricting the application of an action rule by specifying conditions that must
not be present in the world state before or after the rule is applied. In other words, a negative application
condition specifies a set of patterns that must not match any part of the world state before or after the rule
is applied. The use of NACs in action rules allows for more precise and flexible specification of handling
negative preconditions and effects.

4.1.4 An example: moving bread slices

In this section, we discuss the differences between the classical, STRIPS-based, and categorical representa-
tions. The comparison is summarized in Table 4.1. We also walk through an example, shown in Figure 4.3,
that highlights the limitations of the classical representation in tracking implicit effects. In this example
domain, a bread loaf (bread loaf) and slices of the loaf (slice 0, slice 1, slice 2) are on a countertop
(countertop). The goal is to move the bread loaf, and implicitly, all its slices, from the countertop to the
kitchen table (kitchentable). This example illustrates a failure of the classical representation to preserve
global semantics of the world, provided by transitive relations, when actions update on only a part of the
world. Using the double-pushout method of C-set rewriting, the categorical representation is able to do so.

Handling Structured Knowledge This example presents a few noteworthy semantic features. A plan-
ning representation in this domain must be able to encode the following facts, explicitly or implicitly, at
different points in time:

(a) the bread slices are part of the bread loaf

(b) the bread loaf is on the countertop

(c) the bread slices are on the countertop

(d) the bread loaf is on the kitchen table

(e) the bread slices are on the kitchen table

In the case of the categorical representation, fact (a) is captured by the morphism is part of : BreadSlices→
BreadLoaf in the schema. Fact (b) about the bread loaf being on the countertop is reified through an
abstract object called Object. This is done so that the morphism on : Object → Object can repre-
sent the general notion of an object being on top of another object, instead of the more specific re-
lation of a bread loaf being on a countertop. Fact (c) is then captured by the composite morphism
on ◦ is a ◦ is part of : BreadSlices → Object. In the classical representation, fact (a) is captured by the
propositions partOf(slice n, bread) for n = 0, 1, 2. Fact (b) and (d) are captured by the proposition



CHAPTER 4. PRELIMINARY RESULT II - PLANNING USING C-SET AND DPO REWRITING 34

is part of

is part of

{kitchentable}{0, 1, 2}

is a

BreadSlices BreadLoaf

Object

Countertop
is a is a

on

slice_0
slice_1
slice_2

{bread} {countertop}

partOf(slice_0, bread)
⋀ partOf(slice_1, bread)
⋀ partOf(slice_2, bread)
⋀ on(bread, countertop)
⋀ on(slice_0, countertop)
⋀ on(slice_1, countertop)
⋀ on(slice_2, countertop)

Initial State:

BreadLoaf

Object

Countertop
is a is a

on

BreadLoaf

Object

KitchenTable
is a is a

on

BreadLoaf

Object

moveObj(x,s,t)
  pre: on(x,s)
  eff: on(x,t) ⋀ ￢on(x,s) 

partOf(slice_0, bread)
⋀ partOf(slice_1, bread)
⋀ partOf(slice_2, bread)
⋀ on(bread, kitchentable)
⋀ on(slice_0, countertop)
⋀ on(slice_1, countertop)
⋀ on(slice_2, countertop)

x<=bread, 
s<=countertop, 
t<=kitchentable

Action:

New State:

Query: on(slice_0, kitchentable) 
=? True

on(slice_0, kitchentable) 
=? False

Categorical Representation Classical Representation

KitchenTable
is a

{kitchentable}{0, 1, 2}

BreadSlices BreadLoaf

Object

Countertop
is a is a

on

slice_0
slice_1
slice_2

{bread} {countertop}

KitchenTable
is a

Figure 4.3: A comparison of states, actions, and inferences made between the categorical representation and
the classical representation for an example that moves a loaf of bread from a countertop to a kitchen table.

on(bread, countertop) and on(bread, kitchentable). Fact (c) and (e) are captured by the proposi-
tions on(slice n, countertop) and on(slice n, kitchentable). Intuitively, because the bread loaf is
on the countertop, the slices that make up the loaf are also on the countertop. In the categorical represen-
tation, this captured using a composite morphism. In the classical representation, this is done by explicitly
stating for each slice, that it is on the countertop.

Handling Applicability of Actions In the categorical representation, applicability of an action is de-
termined by the existence of a monomorphism in C-Set from the rule input to the world state. Recall that a
(covariant) representable functor maps an object, x ∈ C, to the set of morphisms that have a x as its source.
When you present an action using colimits of representables, there are both explicit conditions given by
the representables and implicit conditions that appear when the representable is computed. This provides
a mechanism for having implicit conditions in rules. In this example, the initial state satisfies the input
action rule involving the BreadLoaf, Object, and Countertop. In the classical representation, applicability of
the action moveObj(bread, countertop, kitchentable) is determined by whether or not the world state
contains the element on(bread, countertop) in the set of propositions.

Handling Implicit Transitivity The action of moving the bread loaf from the countertop to the kitchen
table is applicable in this example. In the categorical representation, this action is modeled by a span in C-Set
whose left foot includes knowledge about the bread loaf being on the countertop and whose right foot includes
knowledge about the bread loaf being on the kitchen table. The apex of the span states that the bread loaf
itself is preserved throughout this change. In the classical representation, the action schema describes the
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generic action of moving an objects x from one location, s, to another, t. The action operator is grounded
by assigning x to the breadloaf, s to the countertop, and t to the kitchentable. Once this action is
applied, a desirable outcome would be for the new state to account for the movement of the bread slices from
the countertop to the kitchen table because they are part of the breadloaf. In the categorical representation,
the same composite morphism that existed in the initial state exists in the final state; however, the target of
the morphism has changed from the countertop to the kitchentable. This captures the implicit change that
occurred to the bread slice locations. In the classical representation, the new state captures the fact that
the breadloaf is on the kitchen table, but does not capture the fact that the bread slices are on the kitchen
table. This is due to the inertia frame axiom, which states that all facts that are not explicitly accounted
for in the effect remain true after the action is applied. In practice, this error would likely cause a planner
to instruct an agent to move each bread slice individually due to an inconsistency in the world state.

While this example presented a simplied kitchen world, it is easy to imagine a larger domain, such as a
manufacturing domain, benefitting from the preservation of global semantics when an action is applied.

4.1.5 Forward Planning with Backtracking using AlgebraicPlanning

Because the components of our framework align with components of the state transition system planning
model, it is possible to leverage the long history of work done to design efficient planning algorithms and
incorporate heuristics.

Consider that a plan is a sequence of actions that change an initial world state to one that satisfies some
goal criteria. To set up a planning problem in our framework, we need to point out two objects in the C-Set
that are the initial state and the goal state. We can then consider a plan to be a sequence of rules that
when applied to the initial state constructs an object such that a monic map exists from the goal state to
that object. We borrow from successful methods in the field of automated planning to implement a forward
search algorithm with backtracking [37]. The pseudocode for this implementation can be found in Algorithm
2. The exit criteria involves checking whether a monic map exists from the goal into the current world state.

As with other planning algorithms, this method is subject to issues related to cycles and non-termination.
This occurs in scenarios where a rule might be applicable indefinitely if the world specification does not
capture a way of destructing an object when a rule is applied. For example, in the sandwich-making example,
slicing the bread does not reduce the bread loaf in any manner which means our planner could potentially
slice the bread loaf infinitely many times. The integration of attributed C-Set, or ”acsets”, is in the future of
this framework which would allow users to specify attributes for each entity, such as BreadLoaf → NumSlices.
This structure would provide a well-defined way to do arithmetic and other manipulations with the attributes
which could help keep track of resource limits. For now, we use an ad hoc method, a rule limit dictionary
that specifies the maximum number of times a rule can be applied in a plan. This implementation will be
made available in the AlgebraicJulia ecosystem as part of this thesis. A copy fo the source code can be found
in Appendix B.3.

https://www.algebraicjulia.org/
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Algorithm 2 Forward Planning with Backtracking

1: procedure ForwardPlan(Y world, G goal, r rules, r usage rule usage, r limits rule limits, p plan)
2: if monomorphism G ↪→ Y exists then
3: return Plan p

4: end if
5: Initialize applicable rules list, applicable
6: for rule in r do
7: Get the input object of rule, rI
8: Check if monomorphism rI ↪→ Y exists
9: if exists then

10: Append rule to applicable

11: end if
12: end for
13: if applicable is empty then
14: ”No applicable rules!” ThrowException
15: end if
16: for a in applicable do
17: if r usage[a] ≥ r limits[a] then
18: ”Rule limit reached!” continue
19: end if
20: Y = DPO(Y , representable(a))
21: Append a to p

22: ForwardPlan(Y , G, r, r usage, r limits, p)
23: end for
24: end procedure



Chapter 5

Ongoing Result - Measuring problem
difference

To support our hypothesis, it is necessary that we design a method for evaluating plan stability in light
of changes to the problem. In order to this, we would like to provide some measurement of difference
between the new planning problem and the old one to ensure that we generate a fair sample of problem
changes for each domain. We believe that the formalism outlined in the previous chapters adds relevant
and helpful structure that allow changes in the problem to be rigorously defined. In particular, we claim
that the formalism captures informative structure about the difference between world states that a STRIPS
comparison cannot provide. This will help develop a measurement for comparing world states with respect
to a problem instance and a goal. In this chapter, we provide a sketch of how we expect this measurement
might work using a simple Blocksworld example for exposition sake.

5.1 Example: Blocksworld

Let us imagine we are in a simple planning domain, such as the Blocksworld domain. We begin with three
blocks A, B, C where block A is on the table and block B is on top of C. The goal is to arrange the blocks
such that B is on top of A which is on top of C. A drawing is shown in Figure 5.1. The initial world state
might look like the following in the language of STRIPS:

Figure 5.1: Initial Blocksworld problem

ontable(A) AND on(B, C) AND ontable(C)

To achieve our goal, we would expect a planner to produce a plan that resembles the following.

37
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Figure 5.2: Example changes to the Blocksworld problem

unstack(B, C)-putdown(B)-pickup(A)-stack(A, C)-pickup(B)-stack(B, A)

In this example, we omit the how the actions are specified and assume the standard Blocksworld PDDL
domain specification.

5.1.1 Change I - Change number of objects

Now suppose we were to add a block D to the table, while keeping the goal the same. All the changes are
drawn in Figure 5.2.

ontable(A) AND on(B, C) AND ontable(C) AND ontable(D)

You would expect a planner to produce the same plan because block D poses an irrelevant change with
respect to the goal.

5.1.2 Change II - Change relations between objects

Now suppose we were to change the arrangement of the initial set of blocks to have Block A on top of B, B
on top of C, and C on top of the table:

on(A, B) AND on(B, C) AND ontable(C)

We would expect that a planner would produce something like:

unstack(A, B)-putdown(A)-unstack(B, C)-putdown(B)-pickup(A)-stack(A,

C)-pickup(B)-stack(B, A)

Notice that the plan is prepended with two additional actions unstack(A)-putdown(A) and the rest of
the plan remains the same.

5.1.3 Change III - Change number of objects and change relations

Finally, let us suppose we were to add in Block D and make the arrangement of the blocks to be the following:

on(A, B) AND on(B, D) AND on(D, C) AND ontable(C)

We would expect that a planner would produce something like:
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Figure 5.3: Blocksworld schema category, C

unstack(A, B)-putdown(A)-unstack(B, C)-putdown(B)-unstack(D,

C)-putdown(D)-pickup(A)-stack(A, C)-pickup(B)-stack(B, A)

Part of the original plan was once again prepended with an even longer sequence of actions. All the
problem changes are shown in Figure 5.2.

5.1.4 Comparing changes to the world state

If we were to compare all three world state changes, we might like to say that changes between the original
problem and the new problem from least to greatest are: Change I < Change II < Change III. This order
was informed by the changes we observed after generating a new plan. However, we could also look to the
structural dissimiliarity as an indicator for how far we are from the initial state.

So how can we measure this change? If we were to remain in the language of STRIPS and PDDL, we
could measure world changes by computing some edit distance between the sets of grounded predicates.
This has some qualms because the world changes found in Change I and Change III would be considered
equal because they both added a single new ground predicate. This would be coarse assessment of world
changes that would not be very useful in more complex settings. Additionally, we could consider a Jaccard
similarity for the sets of ground predicates; however, this metric is sensitive to how verbose the problem
designer wanted to be when describing the world state. For example, if the problem designer wanted to
include all the valid predicates in the Blocksworld vocabulary (on ?x - block ?y - block), (ontable ?x - block),
(clear ?x - block), (holding ?x - block) another equally valid initial problem would be:

ontable(A) AND on(B, C) AND ontable(C) AND clear(B)

The addition of this predicate would alter the score we get for the amount of change we observed in the
world, despite being semantically equivalent. We would like a difference measure to be robust to decisions
made by a human designer.

If we consider the semantic difference between Change I and Change III, namely the addition of on(D,
C) and on(D, table), we will notice that there are explicit and implicit interactions of D with other objects



CHAPTER 5. ONGOING RESULT - MEASURING PROBLEM DIFFERENCE 40

in the scene. D in Change I is involved in a chain of interactions with A, B, and C; whereas D in Change III
interacts solely with the table. Therefore, it would be ideal for a problem difference measure to be sensitive
to semantic changes to the world, as opposed to solely syntactic changes.

Figure 5.4: Representing Blocksworld problem changes as spans

We propose the use of C-sets as means of expressing world state and, in turn, problem changes. If we
were to consider this example using Algebraic Planning, we would express the ontology of our domain using
the category, C shown in Figure 5.3. In this category, there are three objects– Block, Table, Thing. There
are three morphisms which are shown using the three arrows in the diagram in Figure 5.3. The dotted
lines represent is-a relations found in knowledge representation, e.g. (Block, block-is-a, Thing) and (Table,
table-is-a, Thing). The only non-taxonomical relation is the one describing the relation of the block being
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on athing. Recall from Section 3.1 that C-sets are functors between ontology, C, and semantic category, Set.
Therefore, each of these boxes get mapped to sets and each morphism gets mapped to functions. We can
express change I through III using AlgebraicPlanning as shown in Figure 5.4.

Each change is represented as a span (• ← • → •) of three C-set functors within the category of C-Sets.
Within each functor, the gray dotted arrows represent is-a relationships and the black solid arrows are the
function mappings from Block to Thing representing the morphism on(Block,Thing) in C.

For our prototype difference measure, we can take the Grothendieck construction, or category of elements
construction, of a functor F , also noted as Gr(F). This lifts the functor, F , to a category that contains
objects that represent every element in all the sets and morphisms that represent every component of
the function map. A more formal definition of the Grothendieck construction can be seen in Definition
2.4.4. For example, some objects in Gr(F) are (Block, A), (Block, B), (Thing, 2), and (Table, table). This
construction also includes composite maps as morphisms in the category. For example, if there existed
morphisms phi : (X,x1)→ (Y, y0) and chi : (Y, y0)→ (Z, z2), then the composite morphism chi ◦ phi would
be included as morphisms in Gr(F). Because Gr(F) is also a category, identity morphisms are also included.

As an example, we can take our initial problem to be, F , and we can enumerate the objects and
morphisms found in Gr(F).

Objects: (Block, A), (Block, B), (Block, C), (Thing, 0), (Thing, 1), (Thing, 2), (Thing, 3),
(Table, table)

Morphisms: (on, A:3), (on, B:2), (on, C:3), (block-is-a, A:0), (block-is-a, B:1), (block-is-a,
C:2), (table-is-a, table:3), id (Block, A), id (Block, B), id (Block, C), id (Thing, 0), id (Thing,
1), id (Thing, 2), id (Thing, 3), id (Table, table)

In Gr(F), we have 8 objects and 15 morphisms, among them 7 are non-identity morphisms.
Our prototypical difference measure, dδ(F,G) shown in Equation 5.1, could be the complement of the

Jaccard similarity between the non-identity morphisms of Gr(F) and Gr(G), written as Gr(F)∗1 and Gr(G)∗1,
respectively.

δ(F,G) = 1− 2(|Gr(F)∗1 ∩ Gr(G)∗1|)/(|Gr(F)
∗
1|+ |Gr(G)

∗
1|) (5.1)

The homomorphism matching algorithm for getting C-set transformations 3.1.1 can be used to identify
matches between the two functors. This would allow the intersection of the morphisms between Gr(G) and
Gr(F) to consider the structural similarity, as opposed to the syntactic one.

This means that for change I, the difference measure is δ(F,G) = 1 − 2(7)/(7 + 9) = 0.125. Based on
this metric, we also observe that change II has a difference of 0.286. And change III has a difference of 0.375.
The difference between δ(F, F ) is 0.

With this language, there are strict requirements that relationships between objects in the schema are
well-defined. When compared with PDDL, a requirement like this is not enforced. For example, it is possible
to say that on(A, B) and on(D, B) in PDDL. A situation like this is handled by careful description of the
world state or adding axioms that are specific to the Blocksworld domain. For AlgebraicJulia, the metric
will be affected proportional to the size of the schema.

5.1.5 Task planning domains

There are many applications of task planning in robotics. In this thesis, we aim to demonstrate this approach
on a diverse range of planning domains. Because of this, we have selected the one benchmark planning
domain, namely Blocksworld, and two application examples related to manufacturing warehouse automation
and home service automation.
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Figure 5.5: Candidate domains

5.1.5.1 Blocksworld

The Blocksworld domain is a well-established and widely studied benchmark in the field of artificial intel-
ligence (AI) planning. It is a simplistic, yet representative problem-solving domain that has been used for
testing and evaluating various AI planning algorithms and techniques. The domain consists of a finite set of
blocks and a table, where the blocks can be stacked on top of each other or placed on the table. The goal is
to manipulate the blocks to achieve a specified configuration, subject to certain constraints and rules.

In the Blocksworld domain, the state is represented as a collection of predicates, which describe the
relationships between blocks and their positions. Typical predicates used in this domain include on(X, Y),
denoting that block X is placed directly on top of block Y, ontable(X), indicating that block X is positioned
on the table, and clear(X), meaning that there are no other blocks on top of block X. The objective of
a planning problem in the Blocksworld domain is to transform an initial block configuration into a goal
configuration.

This domain allows us to evaluate our method against a domain that has limited degrees of freedom.
What this means that there is only one parameter that can be changed within the domain which is vary
by number of blocks. The number of relations will also be at proportional to the number of blocks because
blocks in this world can only interact with one other object, another block or the table.

5.1.5.2 Home Service Automation

In the future, task planning can be instrumental in home service automation, particularly for kitchen task
assistance, where robots are required to help with various cooking and cleaning tasks. These scenarios involve
complex manipulation, interaction with a variety of objects, and reasoning about recipes or procedures.
Task planning can help robots decompose complex kitchen tasks, such as preparing a meal, into smaller,
manageable sub-tasks. It can also determine the optimal sequence of actions to perform, considering the
dependencies between tasks, cooking times, and resource constraints. Kitchens typically contain a wide range
of objects and tools, such as utensils, appliances, and ingredients. Task planning can enable robots to reason
about the properties and affordances of these objects, selecting the appropriate tools and actions for each
task, and ensuring proper handling and manipulation. Additionally, kitchen environments can be dynamic
and uncertain, with changing conditions or unexpected events, such as spills or ingredient shortages.

In recent years, the application of robot task planning for kitchen assistants has received considerable
attention in both academic and industry research. Beetz et al. [13] demonstrated the potential of autonomous
robots in the kitchen by developing a system capable of preparing pancakes, involving complex manipulation
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tasks and reasoning about actions, objects, and dependencies. Similarly, Tenorth and Beetz [77] developed
KnowRob, a knowledge processing framework that allows autonomous personal robots to perform various
kitchen tasks, such as sandwich-making, by incorporating knowledge representation and reasoning techniques.
In the context of home service and kitchen automation, numerous studies have focused on developing robotic
systems that can handle a wide range of kitchen tasks, such as meal preparation, setting the table, and
dishwashing [23]. However, the successful integration of task planning in kitchen assistants remains an
ongoing challenge, as it involves addressing issues such as object recognition, manipulation, and planning
actions with temporal and spatial constraints. Nevertheless, advances in robotic manipulation, planning
algorithms, and human-robot interaction continue to pave the way for more capable and efficient kitchen
assistant robots in the near future. We feel this is an appropriate domain to evaluate our framework on a
”medium-sized” problem. It is also a friendly domain to present to non-experts in robotics and task planning.

The Sandwich-Making Problem In particular, we will focus on the sandwich-making problem in order
to demonstrate the challenges and opportunities that arise when applying task planning techniques to kitchen
settings. In this problem, a robot must autonomously perform a series of actions to prepare a sandwich,
including selecting ingredients, slicing bread, spreading condiments, and assembling layers, all while adhering
to specific spatial constraints and goals. Kitchen environments present dynamic and uncertain scenarios,
requiring robots to generate stable plans that are robust to changing circumstances, such as ingredient
availability, preferences, or unexpected obstacles.

5.1.5.3 Manufacturing and assembly

Task planning offers a high-level alternative to traditional robotic programming methods, enabling more
abstract, flexible, and scalable representations of tasks and environments. Traditional robotic programming
often involves explicitly defining sequences of low-level actions, control policies, or behaviors to achieve spe-
cific goals. This approach can be time-consuming, inflexible, and hard to adapt to new tasks or environments.
In contrast, task planning focuses on reasoning about the world using high-level representations, making it
a versatile and adaptable approach to robotic programming.

Today, industrial programming methods include lead-through programming and off-line programming.
Lead-through programming remains the most widespread approach to robot programming in industry. In
the case of lead-through programming, the human worker manually manipulates the robot end-effector to a
desired position and saves that position to its trajectory using a teach pendant [83]. Each position may specify
additional signals that trigger actions such as gripping or welding. This is similar to a stop motion animator
moving objects and capturing the frame. As in the case of stop-motion animation, this is straightforward
and intuitive; however, it is also very time-consuming and requires repeating this exercise for every new or
modified task or work cell configuration [85]. This introduces downtime for reprogramming and requires
specialized expertise to program efficient and cooperative trajectories.

To reduce downtime, off-line programming methods were introduced [83]. These methods require a
high-fidelity digital model of the real-world robot and work cell, and a procedural program that specifies
how the task must be accomplished [59]. Off-line programming languages are flexible, allow processing of
sensor inputs, and allow implementation of advanced perception algorithms and simulations. They, however,
demand that a roboticist be capable of developing complex computer programs, making this method a less
accessible option. In practice, most robot-level programs are point-solutions that work on specific robot
platforms, sensors, and algorithms.

To mitigate this, a programming method called goal-oriented robot programming (GoP), also referred
to as task-level programming is used to describe the goal in terms of operations on the objects participating
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in the task [59]. This allows tasks to be expressed functionally, in terms of what must be accomplished.
GoP systems require access to a knowledge base consisting of geometric models of their environment and the
robot, such as the digital model created in off-line programming. This knowledge base is often referred to as
a world model. World models can be built with computer-aided design (CAD) models (that contain mass,
inertia, kinematic descriptions, joint limits) and simulation engines (that generate dynamics), and updated
from sensors such as cameras to provide updates from the real world. GoP systems provide a programming
framework to compose programs using motion primitives, skills, and tasks [14]. GoP systems require a
compiler to transform task-level specifications into robot-level specifications. The compiler’s function is to
generate a robot-level program that manipulates objects in the environment from an initial state to a desired
final state. GoP provides the task-level specifications and places responsibility on the roboticist to write a
goal-oriented program to achieve the goal. Task planning could potentially be used in place of the roboticist
to determine the correct program. We feel this is an appropriate domain to evaluate our framework on a
large problem. Programming robotics to accomplish tasks often require a considerable amount of physical
and spatial information represented in the world model, making it a suitable domain for evaluating how large
of a domain our approach can empirically handle.

The Machine-Tending Problem In particular, task planning can play a vital role in automating and
optimizing manufacturing processes, such as machine-tending applications. In such scenarios, robots are
responsible for loading and unloading materials, workpieces, or tools to and from machines, ensuring smooth
operation, efficiency, and productivity in the manufacturing process. For example, task planning can aid
robots in identifying the optimal sequence of loading and unloading operations across multiple machines,
considering the constraints and objectives of the production process. This would ensure efficient resource
allocation, minimize idle time, and maximize throughput. Additionally, in real-world manufacturing set-
tings, the environment is often dynamic, with unexpected events such as machine breakdowns, changes in
production orders, or resource constraints [25]. In theory, task planning would be robust to these changes.
However, in practice, this is rarely the case when using classical approaches due to underspecified domain
models. This makes it difficult to accurately assess the impact of a change to the plan [22].

5.1.5.4 Comparing machine-tending with sandwich-making

There are many similarities and differences between the sandwich-making problem and the machine-tending
problem. The major difference is the scale at which objects in the kitchen domain vary. For example, in
the kitchen example, within a given ingredient, there may be many valid candidates for that ingredient;
therefore, reasoning about substitutions is critical to the success of reasoning in this domain. Additionally,
sandwich ingredients and tools necessary vary dramatically based on the consumer’s preferences. This
contrasts the machine-tending example because the type of materials and methods for part preparation are
standardized and thoroughly defined. In the machine-tending scenario, it is more likely that the attributes of
a part are more abundant than in ingredients in the sandwich-making scenario. Being able to reason about
both scenarios using the same representation will demonstrate the power of this approach in handling large
varieties of objects, classes, and constraints; such as substitutions and descriptive attributes.
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Proposed Work and Timeline

This thesis, ultimately, aims to address of the problem of plan adaptation in light of changes to a complex
world state.

6.1 Summary of Proposed Work

Below is a high-level summary of the research we presented in this prospectus.

Preliminary Result I - C-set for representing complex world states In this work, we propose
a novel use of the formalism for typed graphs, called C-set which is capable of expressing ontologies and
instances with functional and compositional properties. In particular, we demonstrate its usefulness in
encoding world states as scene graphs in a principled manner. This formalism does so by establishing
a functorial relationship between a syntax category and a semantics category, called functorial semantics,
which induces compositional or path equivalence relations between classes and their corresponding instances.
This is beneficial for (i) managing object, relations, and attributes present in domains with a rich typeclass
hierarchy, (ii) ensuring world states adhere to the prescribed structure, namely the ontology, unambiguously,
and (iii) handling implicit transitive relations induced by composable paths in the ontology. For additional
detail, see Chapter 3.

Preliminary Result II - Planning using C-set and DPO rewriting In this work, we propose the
use of C-set for representing world states in AI task planning. Task planning is responsible for identifying a
sequence of high-level actions that translate an initial state to a goal state. Some problems in the field include
difficulty managing large and complex world states and preserving transitive closure. We claim that these
problems arise due to the limitations of existing representation languages, namely as PDDL and STRIPS.
Towards a defense, we demonstrate that the proposed formalism is capable of addressing these issues through
an example. For additional detail, see Chapter 4.

Ongoing Result - Measuring problem difference In this work, we discuss how our proposed formalism
is provides us with the structure for measuring changes in the problem. We will outlined the three domains
for which of category theoretic structures for task planning can be applied. We propose to demonstrate
the usability and benefits of employing functorial semantics to AI task planning in a range of case studies,

45
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namely, a canonical planning task, machine-tending in manufacturing, and sandwich-making in home service
automation.

6.2 Evaluation

Recall that the, parts of this work aim to support the following hypothesis.

Hypothesis A. We hypothesize that by developing a planning framework that effectively addresses
the challenges of:

(i) representing complex and structured world states,

(ii) reasoning about transitive relations, and

(iii) remaining interoperable with other AI components for neurosymbolic reasoning,

we will be able to generate higher quality plans and enhance the applicability of task planning in
complex real-world domains relative to existing planners.

In order to support this hypothesis, we have identified a few hypotheses for which we will explain how
the each is or will be supported.

6.2.1 Evaluating subordinate hypotheses

Hypothesis A.1 In support of (i), we claim that all scene graphs can be represented as typed graphs.

This will be supported by providing a proof showing that there is a bijective correspondence (a one-
to-one mapping) between the elements of scene graphs, expressed using the RDF standard [84], and the
elements of typed graphs. We will discuss what restrictions will need to be applied to RDF, if necessary.

Hypothesis A.2 In support of (ii), we claim that C-sets and DPO rewriting preserves transitive
relations expressed in the ontology after every action.

This is supported by the definition of a functor and a natural transformation. See Section 4.

Hypothesis A.3 In support of (iii), we claim that arbitrary scene graphs based on a large number of
entities and relations can be translated into C-sets in polynomial time.

This will be supported by designing an algorithm that that takes an abitrary scene graph expressed
using the RDF triples [84] and converts it to a valid C-set, evaluate the complexity of the algorithm based
on its steps, and provide an implementation of the algorithm in AlgebraicPlanning. Empirical results of the
conversion will also be obtained.

Hypothesis A.4 In support of higher quality plans, we claim that the proposed formalism produces
more concise plans (fewer steps) at an equal or higher success rate than an existing general-purpose
planner, Metric-FF [42], that considers typing with and without transitive closure domain axioms for
a range of domains (those with at least k-entities and m-relations in their ontology, where k = [5, 10,
100], for now, and m will be determined) and problem sizes (those with n-objects in the domain, where
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n = [5 : 1000] will depend on the specific domain).

Prior to running the experiment, we will implement a Julia package, called AlgebraicPlanning, with the
following components.

(a) A description and implementation of a C-set based planning language based on Section 3.1

(b) An interface for defining planning problems and domains based on C and rewrite rules.

(c) A planning algorithm that conducts forward planning with backtracking planning based on the pro-
posed formalism based on Section 4.1.3

(d) A measurement for assessing the difference between C-sets basd on Section 5.1.4

(e) A tool for generating problems as C-sets of varying size provided a domain ontology and a range of
instances.

Provided these items, we will run the following experiment whose setup is largely based on the canonical
experiment set-up by Howe and Dahlman [45].:

1. Select and construct planning domains based on Blocksworld, Sandwich-making, and Machine-tending
domains described in Section 5.1.5 in both our formalism and in PDDL.

2. For each domain, construct a problem set consisting of p problems that is uniformly distributed accord-
ing to the proposed measurement. At this time, a reasonable p = 100; however, during experimentation,
more or fewer test cases might be more feasible or significant.

3. Set-up MetricFF with default parameters and, for each domain, set-up MetricFF to handle derived
predicates related to transitive closure, which we will call MetricFF-Transitive. We anticipate this will
be a time-consuming process.

4. Run (a) our proposed planning, (b) MetricFF, and (c) MetricFF-Transitive against the problem set,
setting an upper limit of 30 minutes to obtain a solution.

5. Record which problems were solved, how many plan steps were in the solution, how much CPU time
and memory was required, and any failures or time outs.

6. Analyze and discuss the results against the hypothesis.

Hypothesis A.5 In support of higher quality plans, we claim that the proposed formalism produces
more stable plans than an existing general-purpose planner, Metric-FF [42], that considers typing with
and without transitive closure domain axioms for a range of domains (those with at least k-entities and
m-relations in their ontology, where k = [5, 10, 100], for now, and m will be determined) and problem
sizes (those with n-objects in the domain, where n = [5 : 1000] will depend on the specific domain).

To support this hypothesis, we will run a similar experiment except evaluate for plan stability based on
a fix problem.

1. Select and construct planning domains based on Blocksworld, Sandwich-making, and Machine-tending
domains described in Section 5.1.5 in both our formalism and in PDDL.
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2. (NEW) For each domain, identify a problem that will produce the baseline plan. This problem will
be based on a realistic scenario to the best of our ability.

3. For each domain, construct a problem set consisting of p problems that is uniformly distributed accord-
ing to the proposed measurement. At this time, a reasonable p = 100; however, during experimentation,
more or fewer test cases might be more feasible or significant.

4. Set-up MetricFF with default parameters and, for each domain, set-up MetricFF to handle derived
predicates related to transitive closure, which we will called MetricFF-Transitive. We anticipate this
will be a time-consuming process.

5. (NEW) Run (a) our proposed planning, (b) MetricFF, and (c) MetricFF-Transitive against the base-
line problem, setting an upper limit of 30 minutes to obtain a solution to produce π0.

6. Run (a) our proposed planning, (b) MetricFF, and (c) MetricFF-Transitive against the problem set,
setting an upper limit of 30 minutes to obtain a solution to produce πi where i = 1, ..., p.

7. Record the plan stability between π0 and πi.

8. Analyze and discuss the results against the hypothesis. We will also highlight any noteworthy, domain-
specific observations, such as interesting scenarios that produced a plan stability ofD(π0, πj) = 0, which
implies no change to the plan.

6.3 Dissertation Plan

DeadlineTasksPaperPhase

OCT 2023

• Implement prototype planner using formalism in 
AlgebraicPlanning

• Implement and analyze algorithm for converting RDF 
to C-sets in support of Hypothesis A.1 and A.3

• Implement interfaces for defining planning domain and 
problem

• Release as open-source package

ICAPS’24Use formalism 
for planning

JAN 2024

• Implement method for measuring difference between 
problems

• Implement scenario generator and sampler that 
captures world state changes

Artificial Intell.,
Robotics and 
Autonomous Sys.,
IEEE-TASE

Build problem 
generator

JUN 2024

• Implement test framework with desired performance 
metrics for plan quality 

• Set-up MetricFF planner with appropriate 
configurations (with and without derived predicates)

• Run experiments in support of Hypothesis A.4 and 
A.5

AAAIRun 
experiments

SEPT 2024• Write PhD thesisUMDPhD Defense
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6.4 Paper Goals

The following paper deadlines outline my planned goals for publication. Each publication represents a
milestone in my research and an end point for that particular line of investigation. For instance, the ICAPS
2024 paper should mark the end of my research in implementing the AlgebraicPlanning planner.

• ”AlgebraicPlanning: A category theory-based, computational system for symbolic task planning”

– ICAPS’24, due November 2023

• ”What difference does it make? Generating world states as typed graphs based on desired degree of
change”

– IEEE Robotics and Automation, rolling deadline

– Robotics and Autonomous Systems, rolling deadline

– IEEE T-ASE, rolling deadline

– Artificial Intelligence, rolling deadline

• ”The power of change: A framework for assessing the impact of world changes on plan stability”

– AAAI’24, due September 2024

– Artificial Intelligence, rolling deadline

– Robotics and Autonomous Systems, rolling deadline
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Conclusion

In conclusion, this work proposes a novel approach to the task of AI planning within complex environments.
By focusing on the development of a robust representation language, AlgebraicPlanning, based on category
theory and leveraging ontology-based typed graphs, we aim to better capture and reason about complex world
states and the relationships between objects within them. We tackle three central problems plaguing current
AI planning: the difficulty in expressing complex and structured world states, the struggle with reasoning
about transitive relations, and the challenge of integrating task planning with other AI components to
support neurosymbolic reasoning. Addressing these challenges, we believe, will enable us to generate higher
quality plans and enhance the applicability of task planning in complex real-world domains.

To validate our approach, we have proposed several hypotheses, and we will assess the performance of our
approach against these. We plan to conduct a series of case studies that explore planning in diverse domains,
such as classical planning, manufacturing, and home service robotics, to gauge the breadth and depth of our
approach’s applicability. Furthermore, we aim to contribute a method for plan quality assessment, providing
a systematic way to examine plan stability relative to changes in the world, and giving insight into the
relevance of features in the world to achieving a goal.

In the larger scope, this work will provide a concrete example of the application of category theoretic
formalisms to AI task planning, enriching the field with a new perspective and potentially paving the way for
future research on the intersection of these domains. Given the complexity and dynamic nature of real-world
environments, the advancement of AI task planning is crucial for the future of intelligent systems. As such,
the contributions from this work will not only have academic significance but also practical implications for
a range of industries and applications.
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Appendix A

Example PDDL Problems and Domains

A.1 Blocksworld

Here is a simple PDDL domain and problem file for the Blocksworld scenario.

A.1.1 Domain

(define (domain blocksworld)

(: requirements :strips :typing)

(: predicates

(on ?x - object ?y - object)

(ontable ?x - object)

(clear ?x - object)

(hand -empty)

(holding ?x - object)

)

(: action pick

:parameters (?x - object)

:precondition (and (ontable ?x) (clear ?x) (hand -empty))

:effect (and (holding ?x) (not (ontable ?x)) (not (hand -empty)))

)

(: action put

:parameters (?x - object)

:precondition (holding ?x)

:effect (and (ontable ?x) (clear ?x) (not (holding ?x)) (hand -empty)

)

)

(: action stack

:parameters (?x - object ?y - object)

:precondition (and (holding ?x) (clear ?y))

:effect (and (on ?x ?y) (not (clear ?y)) (not (holding ?x)) (hand -

empty))

)
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(: action unstack

:parameters (?x - object ?y - object)

:precondition (and (on ?x ?y) (clear ?x) (hand -empty))

:effect (and (holding ?x) (clear ?y) (not (on ?x ?y)) (not (hand -

empty)))

)

)

A.1.2 Problem

(define (problem blocksworld -problem)

(: domain blocksworld)

(: objects

A B C - object

)

(:init

(ontable A)

(ontable B)

(ontable C)

(clear A)

(clear B)

(clear C)

(empty -hand)

)

(:goal

(and (on A B) (on B C))

)

)



Appendix B

AlgebraicPlanning.jl Implementation

B.1 Sandwich-Making Example

B.1.1 Domain

This ontology and rules are expressed using the interfaces provided by Catlab.jl.

B.1.1.1 Ontology

In this simple ontology of a kitchen, there are three main entities: Entity, Food, and Kitchenware. Food can
be an Entity or it can be in/on an Entity Similarly, Kitchenware can be an Entity or it can be in/on an
Entity. This specification assigns the set {:Counter, :Fridge, Stove} to Entity, the set {:Breadloaf,
BreadSlice, EggCarton, Egg, CookedEgg, YolkWhite, CheeseBag, Cheese, Mayo, MayoJar, Tomato,

Lettuce, Bacon, CookedBacon} to Food, and the set {:Bowl, :Knife, :Plate, :PaperTowel, :Skillet}
to Kitchenware. The : is just the prefix to indicate that it is a Symbol type in Julia.

1 module World

2 export SpecKitchen , SpecBreakfastKitchen , SchBreakfastKitchen , BreakfastKitchen ,

yBreakfastKitchen

3

4 using Catlab , Catlab.Theories , Catlab.CategoricalAlgebra

5 using AlgebraicPlanning

6

7 @present SpecKitchen(FreeMCategory) begin

8 Entity ::Ob

9

10 Food::Ob

11 food_in_on ::Hom(Food , Entity)

12 food_is_entity ::Hom(Food , Entity)

13 ::Tight(food_is_entity)

14

15 Kitchenware ::Ob

16 ware_in_on ::Hom(Kitchenware , Entity)

17 ware_is_entity ::Hom(Kitchenware , Entity)

18 ::Tight(ware_is_entity)

19 end

20

21 const SpecBreakfastKitchen = copy(SpecKitchen)

22
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23 add_entity !.(Ref(SpecBreakfastKitchen), [

24 :Counter ,

25 :Fridge ,

26 :Stove ,

27 ])

28

29 add_food !.( Ref(SpecBreakfastKitchen), [

30 :BreadLoaf ,

31 :BreadSlice ,

32 :EggCarton ,

33 :Egg ,

34 :CookedEgg ,

35 :YolkWhite ,

36 :CheeseBag ,

37 :Cheese ,

38 :Mayo ,

39 :MayoJar ,

40 :Tomato ,

41 :Lettuce ,

42 :Bacon ,

43 :CookedBacon

44 ])

45

46 add_kitchenware !.(Ref(SpecBreakfastKitchen), [

47 :Bowl ,

48 :Knife ,

49 :Plate ,

50 :PaperTowel ,

51 :Skillet

52 ])

Listing B.1: Breakfast Sandwich-Making Domain

B.1.1.2 Rules

Here rules, or action models, are defined using spans of C-sets. The keys I, O, K mirror those discussed in
Chapter 4. Each line within the macro (@join) contains an instance and a type mapping. These are generic
mappings, i.e. loaf::BreadLoaf refers to some loaf and not a specific loaf in the instance of the world.
This could have easily had said foo::BreadLoaf. The homomorphism matching algorithm takes care of
finding the loaf in the world that can serve as a suitable match.

1 const action_rule_schemas = Dict(

2

3 :slice_bread => @migration(SchDB , begin

4 I => @join begin

5 loaf:: BreadLoaf

6 knife:: Knife

7 end

8 O => @join begin

9 loaf:: BreadLoaf

10 slice:: BreadSlice

11 food_in_on(bread_slice_is_food(slice)) == food_in_on(bread_loaf_is_food(loaf))

12 knife:: Knife

13 end

14 K => @join begin

15 loaf:: BreadLoaf
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16 knife:: Knife

17 end

18 end),

19

20 :put_cheese_on_bread => @migration(SchDB , begin

21 I => @join begin

22 bag:: CheeseBag

23 slice:: BreadSlice

24 end

25 O => @join begin

26 bag:: CheeseBag

27 cheese :: Cheese

28 slice:: BreadSlice

29 cheese_is_food(cheese) == bread_slice_is_food(slice)

30 end

31 K => @join begin

32 bag:: CheeseBag

33 slice:: BreadSlice

34 end

35 end),

36

37 :crack_egg_in_bowl => @migration(SchRule , SchDB , begin

38 I => @join begin

39 egg::Egg

40 bowl::Bowl

41 end

42 O => @join begin

43 yolk_white :: YolkWhite

44 bowl::Bowl

45 food_in_on(yolk_white_is_food(yolk_white)) == ware_is_entity(bowl_is_ware(bowl))

46 orig_container :: Entity

47 end

48 K => @join begin

49 egg_entity :: Entity

50 bowl::Bowl

51 orig_container :: Entity

52 end

53 i => begin

54 egg_entity => food_is_entity(egg_is_food(egg))

55 bowl => bowl

56 orig_container => food_in_on(egg_is_food(egg))

57 end

58 o => begin

59 egg_entity => food_is_entity(yolk_white_is_food(yolk_white))

60 bowl => bowl

61 orig_container => orig_container

62 end

63 end),

64

65 :put_skillet_on_stove => @migration(SchRule , SchDB , begin

66 I => @join begin

67 skillet :: Skillet

68 stove:: Stove

69 end

70 O => @join begin

71 skillet :: Skillet

72 stove:: Stove

73 orig_surface :: Entity
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74 ware_in_on(skillet_is_ware(skillet)) == stove_is_entity(stove)

75 end

76 K => @join begin

77 skillet :: Skillet

78 stove:: Stove

79 orig_surface :: Entity

80 end

81 i => begin

82 skillet => skillet

83 stove => stove

84 orig_surface => ware_in_on(skillet_is_ware(skillet))

85 end

86 o => begin

87 skillet => skillet

88 stove => stove

89 orig_surface => orig_surface

90 end

91 end),

92

93 :put_egg_in_skillet => @migration(SchDB , begin

94 I => @join begin

95 yolk_white :: YolkWhite

96 bowl::Bowl

97 skillet :: Skillet

98 food_in_on(yolk_white_is_food(yolk_white)) == ware_is_entity(bowl_is_ware(bowl))

99 end

100 O => @join begin

101 yolk_white :: YolkWhite

102 bowl::Bowl

103 skillet :: Skillet

104 food_in_on(yolk_white_is_food(yolk_white)) == ware_is_entity(skillet_is_ware(skillet))

105 end

106 K => @join begin

107 bowl::Bowl

108 skillet :: Skillet

109 end

110 end),

111

112 :cook_egg => @migration(SchDB , begin

113 I => @join begin

114 yolk_white :: YolkWhite

115 skillet :: Skillet

116 food_in_on(yolk_white_is_food(yolk_white)) == ware_is_entity(skillet_is_ware(skillet))

117 end

118 O => @join begin

119 cooked_egg :: CookedEgg

120 skillet :: Skillet

121 food_in_on(cooked_egg_is_food(cooked_egg)) == ware_is_entity(skillet_is_ware(skillet))

122 end

123 K => @join begin

124 skillet :: Skillet

125 end

126 end),

127

128 :put_egg_on_sandwich => @migration(SchDB , begin

129 I => @join begin

130 egg:: CookedEgg

131 skillet :: Skillet
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132 slice:: BreadSlice

133 food_in_on(cooked_egg_is_food(egg)) == ware_is_entity(skillet_is_ware(skillet))

134 end

135 O => @join begin

136 egg:: CookedEgg

137 skillet :: Skillet

138 slice:: BreadSlice

139 cooked_egg_is_food(egg) == bread_slice_is_food(slice)

140 end

141 K => @join begin

142 skillet :: Skillet

143 slice:: BreadSlice

144 end

145 end)

146 )

Listing B.2: Breakfast Sandwich-Making Initial State

B.1.2 Problem

The problem is defined by defining a C-set functor for the initial state and the goal state.

B.1.2.1 Initial State

The initial state in this problem states that many objects existing in the world, such as a counter, a fridge,
a bread, a knife, etc. with no interactions between them. Under the hood, however, each object is related
to the Entity class and therefore there exists mapping from each object to distinct entities assigned to type
Entity.

1 using Catlab , Catlab.CategoricalAlgebra , Catlab.Programs , Catlab.Graphics

2 using AlgebraicPlanning

3

4 world_diagram = @free_diagram World.SchBreakfastKitchen begin

5 counter :: Counter

6 fridge :: Fridge

7 bread:: BreadLoaf

8 knife::Knife

9 cheesebag :: CheeseBag

10 egg::Egg

11 skillet :: Skillet

12 bowl::Bowl

13 end;

Listing B.3: Breakfast Sandwich-Making Initial State

B.1.2.2 Goal State

The goal state states that there exists a bread slice, cheese, and a cooked egg, for which the cooked egg maps
to the same food as the bread slice indicating a notion of merging or fusing these objects. The same is said
for the cheese and the bread slice.

1 using Catlab , Catlab.CategoricalAlgebra , Catlab.Programs , Catlab.Graphics

2 using AlgebraicPlanning

3 world_diagram = @free_diagram World.SchBreakfastKitchen begin
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4 slice:: BreadSlice

5 cheese :: Cheese

6 egg:: CookedEgg

7

8 cooked_egg_is_food(egg) == bread_slice_is_food(slice)

9 cheese_is_food(cheese) == bread_slice_is_food(slice)

10 end;

Listing B.4: Breakfast Sandwich-Making Goal State

B.2 Plan

The FF.jl planner, shown in Section B.3, produced the following plan given the domain and problem.

1 crack_egg_in_bowl

2 put_egg_in_skillet

3 cook_egg

4 slice_bread

5 put_cheese_on_bread

6 put_egg_on_sandwich

Listing B.5: Breakfast Sandwich-Making Plan

B.3 FF.jl

1 export FF

2

3 using Catlab , Catlab.CategoricalAlgebra , Catlab.Programs , Catlab.Graphics , Catlab.Theories

4 using Catlab.Graphics.Graphviz: run_graphviz

5 using Catlab.CategoricalAlgebra.DataMigrations:

6 DeltaSchemaMigration , ConjSchemaMigration

7

8 """ mutable struct FFConfig

9

10 """

11 mutable struct FFConfig

12 plan:: Vector{Any}

13 num_step ::Int

14 rule_usage ::Dict

15 end

16

17 """ FFConfig(plan:: Vector{Any}=[], num_step ::Int=0, rule_usage ::Dict=Dict())

18 FFConfig accepts optional parameters

19 - (‘plan:: Vector{Any}=[] ‘) an initial plan which will preppend the found plan. Default is an

empty vector.

20 - (‘num_step ::Int=0‘) an integer specifying the depth within the search tree. This is zero -

indexed.

21 - (‘rule_usage ::Dict=Dict() ‘) a dictionary tracking the number of times a rule has been

applied in the current branch. If backtracking occurs , this dictionary will revert back

to the state at the backtracked node in the tree.

22 """

23 function FFConfig(plan:: Vector{Any}=[], num_step ::Int=0, rule_usage ::Dict=Dict())

24 return FFConfig(plan , num_step , rule_usage)

25 end
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26

27 """ FF(world::ACSet , goal::ACSet , rules_dict ::Dict , rule_limits ::Dict , config :: FFConfig)

28 Executes forward planning search to find a sequence or all sequences of applicable DPO

rewriting rules. A sequence of applicable DPO rewriting rules that transform an initial

state to a goal state is called a _plan_.

29

30 This is a recursive function that takes a current state (world) and goal state (goal) in the

form of ACSets , a dictionary of rules , and dictionary of rule limits. Rule limits are

used to limit the number times a given rule is applied with a plan. This is necessary to

prevent looping within a branch.

31 """

32 function FF(world::ACSet , goal::ACSet , rules_dict ::Dict , rule_limits ::Dict , config :: FFConfig

)

33

34 # Exit criteria: goal is reached

35 if homomorphism(goal , world , monic=true) !== nothing

36 println("Goal reached.")

37 return plan

38 end

39

40 applicable = find_applicable_rules(world , rules_dict)

41

42 # Backtrack criteria: no applicable rules

43 if length(applicable) <= 0

44 throw("No applicable rules found! Terminate path ...")

45 end

46

47 try

48 for rule_hom in applicable # try all applicable rules in order

49 selected = rule_hom.first

50

51 # Backtrack criteria: rule applied too many times

52 try

53 if config.rule_usage[selected] >= rule_limits[selected]

54 println("Abort path. Rule used too many times.")

55 continue

56 end

57 catch

58 config.rule_usage[selected] = 1 # fails if key doesn ’t exist , initialize

59 end

60

61 # apply rule and add to plan

62 prev_world = world

63 try

64 world = rewrite(rules_dict[selected ].rule , world)

65 catch e

66 throw("Could not apply rule! " * string(e))

67 end

68 append !( config.plan , [rules_dict[selected ].rule => rule_hom.second ]) # include both

rule and matched homomorphism

69

70 try

71 config.num_step =+ 1

72 config.plan = FF(world , goal , rules_dict , rule_limits , config)

73 return config.plan

74 catch e

75 world = prev_world

76 pop!( config.plan)
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77 println("Path failed. Try a different path.")

78 # println(string(e))

79 end

80 end

81 catch e

82 throw("Something went wrong with error: " * string(e))

83 end

84

85 println("No plan found.")

86 end

Listing B.6: FF.jl
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Past papers and presentations

C.1 Papers

1. Aguinaldo A., Patterson E., Fairbanks, J., Ruiz J. A Categorical Representation Language and Com-
putational System for Knowledge-Based Planning. Under review. 2023.

2. Aguinaldo A., Regli W. Modeling traceability, change information, and synthesis in autonomous system
design using symmetric delta lenses. ICRA Compositional Robotics Workshop 2022.

3. Aguinaldo A., Regli W. Encoding Compositionality in Classical Planning Solutions. IJCAI Workshop
on Generalization in Planning 2021.

4. Aguinaldo A., Regli W. A Graphical Model-Based Representation for Classical AI Plans using Category
Theory. ICAPS 2021 Workshop on Explainable AI Planning.

5. Aguinaldo A., Bunker J., Pollard B., Shukla A., Canedo A., Quiros G., Regli W. RoboCat: A Cat-
egory Theoretic Framework for Robotic Interoperability Using Goal-Oriented Programming. IEEE
Transactions on Automation Science and Engineering, 2021. doi: 10.1109/TASE.2021.3094055.

C.2 Presentations

1. ”A Category Theoretic Approach to Planning in a Complex World” at Microsoft Future Leaders in
Robotics and AI Seminar Series in 2023

2. ”Contextual affordances in context-aware autonomous systems” at AMS JMM 2023 Special Session on
Applied Category Theory (a Mathematics Research Communities session)

3. ”Contextual affordances in context-aware autonomous systems” at NIST Compositional Structures for
Systems Engineering and Design Workshop 2022

4. ”Category theory for automated planning and program compilation in robotics” at Topos Berkeley
Seminar 2022

5. ”Applications of category theory to automated planning and program compilation in robotics” at Xerox
PARC Design Seminar in 2022
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6. ”Modeling traceability, change information, and synthesis in autonomous system design using symmet-
ric delta lenses” at International Conference for Robotics and Automation (ICRA) 2022 Compositional
Robotics Workshop in 2022

7. ”Encoding Compositionality in Classical Planning Solutions” at International Joint Conference for
Artifical Intelligence (IJCAI): Workshop on Generalization in Planning in 2021

8. ”A Graphical Model-Based Representation for Classical AI Plans using Category Theory” at Interna-
tional Conference for Automated Planning and Scheduling (ICAPS): Explainable AI Planning Work-
shop in 2021

9. ”Polynomial Functors in Catlab” at the Applied Category Theory Conference in 2021

10. ”Diary of a software engineering using categories” at Topos Institute: Berkeley Seminar and Lógicos
em Quarentena (LQ) Seminar in 2021

11. ”Category Theory for Software Modeling and Design” at Hunter College Applied Mathematics Seminar
in 2020
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• Open-source contributor to AlgebraicJulia

• Co-organizer of Compositional Robotics: Mathematics and Tools (ICRA 2023 Workshop), 2023

• Co-organizer of The Adjoint School, 2022-2023

• Student of The Adjoint School, 2021
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http://adjointschool.com/2021.html
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Reading List

D.1 Area 1 – Knowledge Representation

This reading list focuses on typed graphs, scene graphs, and knowledge graphs in robotics.

1. Galindo, C., Fernández-Madrigal, J. A., González, J., & Saffiotti, A. (2008). Robot task planning using
semantic maps. Robotics and Autonomous Systems, 56(11), 955–966. https://doi.org/10.1016/j.robot.2008.08.007

2. Tenorth, M., & Beetz, M. (2017). Representations for robot knowledge in the KNOWROB framework.
Artificial Intelligence, 247, 151–169. https://doi.org/10.1016/j.artint.2015.05.010

3. Miao, R., Jia, Q., & Sun, F. (2023). Long-term robot manipulation task planning with scene graph and
semantic knowledge. Robotic Intelligence and Automation, November. https://doi.org/10.1108/ria-
09-2022-0226

4. Agia, C., Jatavallabhula, K. M., Khodeir, M., Miksik, O., Vineet, V., Mukadam, M., Paull, L., &
Shkurti, F. (2021). TASKOGRAPHY: Evaluating robot task planning over large 3D scene graphs. 5th
Conference on Robot Learning, CoRL, 1–18. http://arxiv.org/abs/2207.05006

5. Armeni, I., He, J. Z., Gwak, J., Zamir, A. R., Fischer, M., Malik, J., & Savarese, S. (2019). 3D Scene
Graph. Iccv. http://3dscenegraph.stanford.edu

D.2 Area 2 – AI Planning

This reading list focuses on typed planning and derived predicates.

1. Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20, 61–124. https://doi.org/10.1613/jair.1129

2. Hoffmann, J. (2003). The metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research. https://doi.org/10.1613/jair.1144

3. Thiebaux, S., Hoffmann, J., & Nebel, B. (2000). In Defense of PDDL Axioms. Syntax And Semantics,
1–6.

63



APPENDIX D. READING LIST 64

4. Howe, A. E., & Dahlman, E. (2002). A critical assessment of benchmark comparison in planning.
Journal of Artificial Intelligence Research, 17, 1–33. https://doi.org/10.1613/jair.935

5. Fox, M., Gerevini, G., Long, D., & Serina, I. (2006). Plan stability: Replanning versus plan repair.
ICAPS 2006 - Proceedings, Sixteenth International Conference on Automated Planning and Scheduling,
2006(January), 212–221. https://doi.org/10.1016/j.engappai.2023.106275

D.3 Area 3 – Category Theory

This reading list focuses on functorial data migration and graph rewriting.

1. Brown, K., Patterson, E., & Hanks, T. (2022). Computational Category-Theoretic Rewriting (Vol. 1).
Springer International Publishing. https://doi.org/10.1007/978-3-031-09843-7

2. Patterson, E., Lynch, O., & Fairbanks, J. (2021). Categorical Data Structures for Technical Computing.
Compositionality, 4(5), 1–27. http://arxiv.org/abs/2106.04703

3. Spivak, D. I. (2012). Functorial data migration. Information and Computation, 217, 31–51. https://doi.org/10.1016/j.ic.2012.05.001

4. Patterson, E. (2017). Knowledge Representation in Bicategories of Relations. CoRR, 1–7 (Chp 5-6).
http://arxiv.org/abs/1706.00526

5. Spivak, D. I., & Kent, R. E. (2012). Ologs: A categorical framework for knowledge representation.
PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0024274
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